
PROBABILISTIC ONTOLOGY:

REPRESENTATION AND MODELING METHODOLOGY

by

Rommel Novaes Carvalho

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Systems Engineering and Opera'tions Research

Dr. Kathryn Laskey, Dissertation Director

Dr. Paulo Costa, Committee Member

&&.v~ Dr. Kuo-Chu Chang, Committee MemberC~
C!:z9~~,- .' (A

Dr. David Schum, Committee Member

~!.:j....... 7~_Dr.Larry Kerschberg, Committee Member

Dr. Fabio Cozman, Committee Member

Dr. Ariela Sofer, Department Chair

Dr. Lloyd J. Griffiths, Dean, Volgenau School epy
of Engineering

Date: /..1> 3ftu... ;2() I I	 Summer Semester 2011
George Mason University
Fairfax, VA

Probabilistic Ontology:
Representation and Modeling Methodology

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Rommel Novaes Carvalho
Master of Science

University of Braśılia - UnB, 2008
Bachelor of Science

University of Braśılia - UnB, 2003

Director: Dr. Kathryn Laskey, Professor
Department of Systems Engineering and Operations Research

Summer Semester 2011
George Mason University

Fairfax, VA

Copyright c� 2011 by Rommel Novaes Carvalho
All Rights Reserved

ii

Dedication

I dedicate this work to my wife who supported me with love and wisdom during this mar-
velous and arduous experience, to my parents and sisters who have showed me my whole
life, through example, that hard work always pays o↵, and to my future children who even
before being born have inspired me to be the best example possible, both as a father and
as a person.

iii

Acknowledgments

I have been blessed with so much help from friends and colleagues that I could easily make
this section the longest in my whole dissertation. However, in consideration to you, the
reader, I will try to be concise without forgetting to thank all the people that helped me,
somehow, fulfill my scholar’s dream, which is manifested in this dissertation.

First, I would like to thank the Brazilian O�ce of the Comptroller General (CGU) for
believing in my work and giving me the time and money to work full-time on my PhD. I
would like to particularly thank my bosses José Geraldo Loureiro Rodrigues, Oswaldo Igle-
sias de Azeredo, and Tatiana Zolhof Panisset for supporting my proposal when I requested
the time necessary (and the extension) to come here to advance science in order to provide
better tools for improving public transparency and fighting corruption. On the same note,
I would like to thank the O�ce of Naval Research (ONR) and the Air Force O�ce of Sci-
entific Research (AFOSR) for hiring me as a Graduate Research Assistant (GRA) during
my PhD, under Contract]N00173-09-C-4008 and Grant]FA9550-08-1-0425, respectively.
This experience as a GRA has given me the opportunity to put my ideas into practice and
allowed me to participate and present papers at several conferences. I am also grateful
for the fellowships I received during my PhD: the ISWC travel fellowship I received from
the U.S. National Science Foundation (NSF) that partially funded my trip to China for
the ISWC conference, and the Volgenau School of Engineering (VSE) Academic Fellowship
from George Mason University that helped me with expenses during Spring 2011.

As previously described, many people have contributed to the conclusion and even
initiation of this PhD. I would like to start by thanking the people who helped me write the
almost 100 pages long report I submitted to CGU asking for permission to work on my PhD.
In particular, I would like to thank Prof. Dr. Marcelo Ladeira for not only reviewing the
document many times, but also helping me write many parts of the document. Moreover,
I would like to thank Gustavo Gomes and Heleno Borges for having the patience to read
this long report and giving me important insights on how to make it much better several
times. Last, but not least, I would like to thank the folks from the Corruption Prevention
and Strategic Information Secretariat (SPCI) for helping me with the proof of concept use
case that showed how my work with probabilistic ontologies could be applied for fighting
corruption. In special, I would like to thank Henrique Rocha who believed in the idea
and Mário Vińıcius Claussen Spinelli, the expert who trained me on techniques for fraud
detection and prevention and evaluated the proof of concept model I created.

Once I arrived in the USA and actually started working on my dissertation, I started
getting help from folks all over the world, given the diversity on the student body at George
Mason University. A group that I am extremely grateful to have been part of is the Krypton
group. Every Friday we would have somebody presenting their work and receiving feedback
from not only Professors, but also students and even folks working in Industry. More
importantly, this was a venue that allowed me to dry run many presentations and to validate
many of my ideas, which eventually became my PhD. I would like to thank the group as a

iv

whole for having the patience to hear about procurement fraud detection about a thousand
times, at times, even more than one Friday in a row! I am truly grateful. In particular, I
would like to thank Andy Powell, Bill Bunting, Charles Twardy, Mark Locher, Todd Martin,
Wei Sun and Young Park for their extensive feedback.

Additional thanks goes to all the people involved in the PRobabilistic OntoloGies for
Net-centric OperationS (PROGNOS) project. Some of them have already been mentioned
here, so they will not be repeated. The ones not yet mentioned are Dr. Paulo Costa,
Dr. Kathryn Laskey, Dr. KC Chang, Aditya Mugali, Richard Harbelin, and Michael
Lehocky. The last two were the subject matter experts (SME) on one of the use cases in
this dissertation. A special thanks goes to Rick Harbelin for helping me out a lot on this
use case in numerous meetings and e-mail exchanges.

The professors deserve a separate thanks given the amount of work and patience they
had with me. First, I would like to thank my tutor and friend Dr. Paulo Costa, who has
helped me even before I came to the USA. He was the co-advisor on my Masters thesis,
where I implemented his PhD work, PR-OWL. Without him I am sure this PhD project
would have not even started. Besides being a good teacher, Paulo has been a great friend. I
lost count of the number of barbecues, I mean meetings, and beers, I mean discussions, we
had both at his and my place. Not only that, but his family has also been great company
to both me and my dear wife, be it in Fairfax, Scotland, or Chicago!

Dr. Kathryn Laskey has been tough as a scholar and kind as a mother. I remember
going to her o�ce after just a few months in the PhD program to ask if my work was living
up to her expectation. I remember telling her that I was afraid I was not being productive
enough, since there were a lot of things I did not understand and that I was taking too long
to read and learn all those papers I had been getting from her and Dr. Chang. Then she
looked at me really serious and simply said to me: “Rommel, that is why you are doing your
PhD! If you knew it all you would not be here! Just give yourself some time.” Dr. Laskey
was also a baseline for me to see how much I was learning and evolving in my research. I
remember in our first meetings that I would come up with a great idea on how to fix my
algorithm and she would look at it and “destroy” it in less than 30 seconds! I had no idea
how she did that. How can she come up with a counter-example so fast? The only thing I
could do was to take her counter-examples, go home, and think about them for days before
I could come back to continue our discussion. But then, as weeks turned into months and
months into years, I started to realize that I did not have to take her counter-examples
home anymore. I actually started to counter her counter-examples on the fly! Wow, was
that exciting or what? I would get anxious to go home and tell my wife the news that I
was able to counter-argue something that Dr. Laskey said! How cool was I? Things kept
getting better and better as my ideas actually matured enough that she would even agree
with them without having some kind of counter-example. By the end of my PhD I even
had some cases where I was able to have new reasonable ideas during a meeting with Dr.
Laskey and even actively participate in discussions with her providing counter-examples of
my own! I still have a lot to learn, but she sure was a good baseline to track my progress
during these 3 years. Just one last example that she still has a lot to teach me is how
she transformed my horrible and cumbersome 3-page abstract into less than one and a half
well-written pages. The amazing thing to notice was that she did not leave anything out,
put it in a much more understandable way, and in half the size! But that is not all. Besides
being a great teacher, Dr. Laskey helped me on many occasions with her overhead funding

v

to support my trips to conferences. Without her help I would not have been able to go
to ISWC/URSW 2010 (in China) nor to Fusion 2011 (in Chicago). As I said, tough as a
scholar and kind as a mother! Thanks, Dr. Laskey!

Dr. Chang has been a great Professor and teacher. First of all, I would like to thank
him for the fact that he agreed to let me work on his project, even without knowing me,
while I was waiting for the PROGNOS project to start. Besides that, I’ve learned a lot from
the few months we have worked together in this project. It is amazing how he can make
extremely di�cult math papers so easy to understand with just 10 minutes of explanation
and a few sketches on a blank page.

However, these were not the only professors who helped me. I would like to thank all
the professors I worked with at the Volgenau School of Engineering from Goerge Mason
University. I would like to highlight the professors who participated in my committee
(besides the ones I have already thanked), which includes Dr. David Schum, Dr. Larry
Kerschberg, and Dr. Fabio Cozman, who is from the University of São Paulo and kindly
accepted my invitation even without the funding to bring him personally to participate in
my comprehensive exam, pre-defense, and defense.

One group that I do not get tired of thanking is the Group of Artificial Intelligence
(Grupo de Inteligncia Artificial - GIA) from the University of Braśılia, Brazil. I lost count
of the number of times they have helped me. I would like to thank, in particular, Dr.
Marcelo Ladeira who is responsible for the group and who I have been working with since
2001. I would also like to thank Laécio Santos for helping out with implementation of a few
algorithms we worked on for MEBN after a few meetings with Dr. Laskey through Skype
during my first year of my PhD studies. Finally, I would like to thank Shou Matsumoto.
Shou has helped me not only with the implementation of my PhD work for his Masters
degree, but also by testing out my ideas and giving me important feedback and insights on
how to improve my PhD work. For that I am truly grateful.

Furthermore, I would like to thank all my friends and family who have helped me directly
or indirectly. Even PhD students deserve a break and although I have not been able to
visit my home country, Brazil, for three years, I have received countless and unforgettable
visits from friends and family. It is true that I was not able to go to Brazil because there
was always somebody visiting us during our break, but my wife and I have enjoyed each
and every one of the visits! Thank you all for making this intense work more enjoyable.

Finally, I would like to thank again my wife, Silnara Batista Carvalho, who has helped
me so many times that it is impossible to keep track. She would encourage me to relax
when I was working too much, but would also demand that I had to work when I was
too relaxed. Thank you so much for taking care of me, for being my partner, my lover,
and for making me so happy no matter the circumstances. I have seen our love grow and
with it our maturity as a couple. Last but not least, I would like to thank one more time
my parents, Francisco de Moura Carvalho Neto and Mı́rian Novaes Carvalho, and sisters,
Patŕıcia Novaes Carvalho and Tatiana Novaes Carvalho, who have supported me in every
way possible, be it financially or emotionally. Thank you so much for believing in me and
for giving me all the support a child and brother could ever ask for!

vi

Table of Contents

Page

List of Tables . x
List of Figures . xi

Abstract . xvi
1 Introduction . 1

1.1 Problem Statement . 2
1.1.1 Lack of mapping to OWL . 6

1.1.2 Lack of support for OWL types . 8

1.2 Research Contributions and Structure of this Dissertation 9
2 Di↵erent Approaches To Knowledge Modeling 12

2.1 UML and ER . 13
2.2 Knowledge Representation and Reasoning 17

2.3 Ontology and the Semantic Web . 20

2.3.1 The Advantages of Ontology and the Semantic Web 21

2.3.2 The Beginning of OWL . 22

2.3.3 The Web Ontology Language (OWL) 25

3 Representing Uncertainty . 28

3.1 Multi-Entity Bayesian Network (MEBN) . 29

3.2 Probabilistic Web Ontology Language (PR-OWL) 30

3.3 Related Work . 35
3.3.1 First-Order Probabilistic Languages (FOPL) 35

3.3.2 Probabilistic Languages for the SW 39

4 A Formal Definition for Probabilistic Ontology - PR-OWL 2 41

4.1 Why map PR-OWL Random Variables to OWL Properties? 42

4.2 The bridge joining OWL and PR-OWL . 46

4.3 Extending PR-OWL to Use OWL’s Types 51

4.4 Defining a Random Variable in PR-OWL 2 53

4.4.1 Mutually Exclusive and Collectively Exhaustive Outcomes 56

4.4.2 Avoiding OWL Full . 57

vii

4.4.3 Built-in Random Variables . 58
4.4.4 Defining Arguments for Random Variables 62

4.4.5 Defining Distributions for Random Variables 63

4.4.6 Examples of Random Variables . 65

4.5 Entity Hierarchy and Polymorphism . 72

4.6 Type Uncertainty . 76

4.7 Defining Nodes in PR-OWL 2 . 78

4.7.1 Defining Domain-Specific Knowledge 80

4.7.2 Defining Findings . 82

4.7.3 MEBN Expressions . 84

4.7.4 Examples of Nodes . 86

4.8 Types of Uncertainty Reasoning for the Semantic Web 101

5 Uncertainty Modeling Process for Semantic Technologies (UMP-ST) 104

5.1 Probabilistic Ontology for Procurement Fraud Detection and Prevention in

Brazil . 109
5.1.1 Requirements . 111

5.1.2 Analysis & Design . 115

5.1.3 Implementation . 121

5.1.4 Test . 129
5.2 Probabilistic Ontology for Maritime Domain Awareness 138

5.2.1 First Iteration . 139
5.2.2 Second Iteration . 149
5.2.3 Third Iteration . 162
5.2.4 Testing the Final MDA PO . 175

6 Conclusion . 182
6.1 Future Work . 185

A PR-OWL 2 Abstract Syntax and Semantics . 189

A.1 Random Variables . 190
A.2 MEBN Main Elements . 197
A.3 MEBN Expressions . 228

B Use Cases Implementation Details . 246

B.1 Probabilistic Ontology for Procurement Fraud Detection and Prevention in

Brazil . 246
B.2 Probabilistic Ontology for Maritime Domain Awareness 266

B.2.1 Fist Iteration . 267
B.2.2 Second Iteration . 280

viii

B.2.3 Third Iteration . 295
Bibliography . 310

ix

List of Tables

Table Page

4.1 Table representing the distribution for the random variable isRelated(person1,

person2) . 67

5.1 Requirements Traceability Matrix for the requirements of the fraud detection

model . 116
5.2 Requirements Traceability Matrix for the rules of the fraud detection model 119

5.3 Requirements Traceability Matrix for the MFrags of the fraud detection model127

5.4 A simple method for identifying entities, attributes, and relationships . . . 165

5.5 Grouping for entities, attributes, and relations in third iteration 168

5.6 Number of TP, FP, TN, and FN . 179

5.7 Percentage of TP, FP, TN, and FN . 180

A.1 Table representing the distribution for the random variable isRelated(person1,

person2) . 221

A.2 Table representing the distribution for the domain resident node isRela-

ted(person1,person2) . 222

x

List of Figures

Figure Page

1.1 A regular system for storing information about public procurements 3

1.2 An automated system for identifying and preventing frauds in public pro-

curements . 4
1.3 A class diagram for the procurement domain 7

1.4 Front of an Enterprise MFrag . 8

1.5 Boolean individual defined in PR-OWL . 9
2.1 A class diagram for the procurement domain 14

2.2 A class diagram with instances of classes from the procurement domain . . 15

2.3 An extended entity-relationship diagram for the procurement domain 16

2.4 Retrieving information through the SW for the procurement domain 23

3.1 PR-OWL simple model . 33

3.2 PR-OWL detailed model . 34
3.3 A taxonomy of first-order probabilistic languages (reproduced with permis-

sion from Milch and Russell [91]) . 37

4.1 OWL ontology for the public procurement domain 42

4.2 Front of an Enterprise MFrag . 43

4.3 Using OWL triples for probabilistic reasoning 45

4.4 Unknown mapping between PR-OWL 1 RVs and OWL properties 45

4.5 PR-OWL 1 lack of mapping from RVs to OWL properties 46

4.6 PR-OWL 1 lack of mapping from arguments to OWL properties 47

4.7 The bridge joining OWL and PR-OWL . 48

4.8 Example of binary RVs mapping to OWL properties for both predicate and

function . 50
4.9 Boolean individual defined in PR-OWL. 52
4.10 The di↵erent types of entities defined in PR-OWL. 53

4.11 The OWL restrictions of the RandomVariable class 55
4.12 Graph with the main concepts for defining random variables 59

4.13 The OWL restrictions of the BooleanRandomVariable class 59

xi

4.14 The OWL restrictions of the classes LogicalOperator and Quantifier . . 60

4.15 The OWL restrictions of the MappingArgument class 62

4.16 The OWL restrictions of the ProbabilityDistribution class 64

4.17 Graph with the main concepts and their relations for defining probabilistic

distributions . 65
4.18 Graph of the main MEBN elements and their relations 79

4.19 Graph with the main elements necessary to define a domain-specific MEBN

fragment . 81

4.20 Graph with the main concepts and their relations for defining findings in an

MEBN theory . 82

4.21 Bayesian network showing the pattern for representing findings in MEBN . 83

4.22 Graph with main concepts and their relations necessary for defining argu-

ments and MEBN expressions . 85

4.23 Nodes for representing that two people are more likely to be related if they

live at the same address . 86
4.24 A common way to define restrictions like symmetry in BNs 87

4.25 Posterior probabilities for symmetrical properties showing how the constraint

works, but unfortunately it double counts evidence 88

4.26 Defining restrictions like symmetry in BNs using order on arguments 89

4.27 Posterior probabilities for symmetrical properties using order on arguments,

which does not cause double counting of evidence 90

4.28 Nodes for representing the finding that Bill has annual income of 75,000.00 97

5.1 Uncertainty Reasoning Process for ST (URP-ST) 105

5.2 Uncertainty Modeling Process for Semantic Technologies (UMP-ST) 107

5.3 Probabilistic Ontology Modeling Cycle (POMC) - Requirements (Goals),

Analysis & Design (Entities, Rules, and Group), Implementation (Mapping

and LPD), and Test (Evaluation) . 108

5.4 Procurement fraud detection overview . 111
5.5 Entities, their attributes, and relations for the procurement model 118

5.6 Entities for the procurement domain . 122

5.7 Creating a RV in PR-OWL 2 plugin from its OWL property by drag-and-drop124

5.8 Probabilistic ontology for fraud detection and prevention in public procure-

ments . 126
5.9 LPD for node isSuspiciousProcurement(procurement) 128

xii

5.10 Results of unit testing for the JudgmentHistory MFrag 131

5.11 Part of the SSBN generated for the first scenario 134

5.12 Part of the SSBN generated for the second scenario 136

5.13 Part of the SSBN generated for the third scenario 138

5.14 Entities, their attributes, and relations for the MDA model after the first

iteration . 141
5.15 MTheory created in first iteration . 144

5.16 SSBN generated for scenario 1 . 145

5.17 SSBN generated for scenario 2 . 146

5.18 SSBN generated for scenario 3 . 147

5.19 SSBN generated for scenario 4 . 148

5.20 SSBN generated for scenario 5 . 149

5.21 Normal and suspicious behavior of merchant and fishing ships 150

5.22 Entities, their attributes, and relations for the MDA model after the second

iteration . 154
5.23 MTheory created in second iteration . 156

5.24 SSBN generated for the first scenario . 159

5.25 SSBN generated for the second scenario . 160

5.26 SSBN generated for the third scenario . 162

5.27 MFrags changed/added in third iteration . 170

5.28 SSBN generated for scenario 1 . 172

5.29 SSBN generated for scenario 2 . 173

5.30 SSBN generated for scenario 3 . 175

5.31 Part of the SSBN generated for “sure” positive of a possible exchange illicit

cargo using merchant ship . 177

5.32 Simulation editor . 180
6.1 Example of how to use EPF to tailor the UMP-ST process 188

A.1 The hierarchy of PR-OWL 2 classes . 189

A.2 The OWL restrictions of the RandomVariable class 190
A.3 The hierarchy of the RandomVariable class 191

A.4 Graph with the main concepts for defining random variables 192

A.5 The OWL restrictions of the BooleanRandomVariable class 194
A.6 The OWL restrictions of the classes LogicalOperator and Quantifier . . 195

A.7 The hierarchy of the main classes that represent MEBN elements 197

A.8 The OWL restrictions of the MTheory class 198

xiii

A.9 Graph of the main MEBN elements and their relations 199

A.10 The OWL restrictions of the MFrag class . 200

A.11 The OWL restrictions of the DomainMFrag class 201

A.12 Graph with the main elements necessary to define a domain-specific MEBN

fragment . 202

A.13 The OWL restrictions of the FindingMFrag class 203

A.14 Graph with the main concepts and their relations for defining findings in an

MEBN theory . 204

A.15 Bayesian network showing the pattern for representing findings in MEBN . 205

A.16 The OWL restrictions of the Node class . 206
A.17 The OWL restrictions of the ResidentNode class 207
A.18 The OWL restrictions of the DomainResidentNode class 208
A.19 The OWL restrictions of the FindingResidentNode class 210

A.20 The OWL restrictions of the ContextNode class 211
A.21 The OWL restrictions of the InputNode class 212

A.22 The OWL restrictions of the FindingInputNode class 213

A.23 The OWL restrictions of the GenerativeInputNode class 215

A.24 The OWL restrictions of the ProbabilityDistribution class 216

A.25 Graph with the main concepts and their relations for defining probabilistic

distributions . 217
A.26 The OWL restrictions of the DeclarativeDistribution class 218
A.27 The OWL restrictions of the PR-OWLTable class 220
A.28 The OWL restrictions of the classes ProbabilityAssignment and Condi-

tioningState . 224

A.29 The hierarchy of the main classes for representing arguments and MEBN

expressions . 229

A.30 Graph with main concepts and their relations necessary for defining argu-

ments and MEBN expressions . 230

A.31 The OWL restrictions of the MExpression class 231

A.32 The OWL restrictions of the SimpleMExpression class 231

A.33 The OWL restrictions of the BooleanMExpression class 233

A.34 The OWL restrictions of the Argument class 234

A.35 The OWL restrictions of the ConstantArgument class 235

A.36 The OWL restrictions of the OrdinaryVariableArgument class 237

A.37 The OWL restrictions of the ExemplarArgument class 238

xiv

A.38 The OWL restrictions of the MExpressionArgument class 240

A.39 The OWL restrictions of the MappingArgument class 242

A.40 The OWL restrictions of the OrdinaryVariable class 243

A.41 The OWL restrictions of the Exemplar class 245

B.1 MFrag Personal Information . 249

B.2 MFrag Procurement Information . 251

B.3 MFrag Enterprise Information . 253

B.4 MFrag Front of Enterprise . 254

B.5 MFrag Exists Front in Enterprise . 256

B.6 MFrag Related Participant Enterprises . 257

B.7 MFrag Member Related to Participant . 258

B.8 MFrag Competition Compromised . 259

B.9 MFrag Owns Suspended Enterprise . 261

B.10 MFrag Judgment History . 262

B.11 MFrag Related to Previous Participants . 263

B.12 MFrag Suspicious Committee . 264

B.13 MFrag Suspicious Procurement . 265

B.14 MFrag for identifying the ship of interest . 268

B.15 MFrags for identifying a terrorist crew member 269

B.16 MFrags for identifying the ship with unusual route 273

B.17 MFrags for identifying the ship with evasive behavior 276

B.19 Ship Characteristics MFrag . 282

B.18 MTheory created in second iteration . 283

B.20 Terrorist Plan MFrag . 284

B.21 Bomb Port Plan MFrag . 285

B.22 Exchange Illicit Cargo Plan MFrag . 286

B.23 Ship of Interest MFrag . 287

B.24 Meeting MFrag . 288

B.25 Unusual Route MFrag . 289

B.26 Evasive Behavior MFrag . 291

B.27 Aggressive Behavior MFrag . 292

B.28 Erratic Behavior MFrag . 293

B.29 MTheory created in third iteration . 299

xv

Abstract

PROBABILISTIC ONTOLOGY:
REPRESENTATION AND MODELING METHODOLOGY

Rommel Novaes Carvalho, PhD

George Mason University, 2011

Dissertation Director: Dr. Kathryn Laskey

The past few years have witnessed an increasingly mature body of research on the Se-

mantic Web (SW), with new standards being developed and more complex problems being

addressed. As complexity increases in SW applications, so does the need for principled

means to cope with uncertainty in SW applications. Several approaches addressing uncer-

tainty representation and reasoning in the SW have emerged. Among these is Probabilistic

Web Ontology Language (PR-OWL), which provides Web Ontology Language (OWL) con-

structs for representing Multi-Entity Bayesian Network (MEBN) theories. However, there

are several important ways in which the initial version PR-OWL 1 fails to achieve full com-

patibility with OWL. Furthermore, although there is an emerging literature on ontology

engineering, little guidance is available on the construction of probabilistic ontologies.

This research proposes a new syntax and semantics, defined as PR-OWL 2, which

improves compatibility between PR-OWL and OWL in two important respects. First,

PR-OWL 2 follows the approach suggested by Poole et al. to formalizing the association

between random variables from probabilistic theories with the individuals, classes and prop-

erties from ontological languages such as OWL. Second, PR-OWL 2 allows values of random

variables to range over OWL datatypes.

To address the lack of support for probabilistic ontology engineering, this research de-

scribes a new methodology for modeling probabilistic ontologies called the Uncertainty

Modeling Process for Semantic Technologies (UMP-ST). To better explain the methodol-

ogy and to verify that it can be applied to di↵erent scenarios, this dissertation presents

step-by-step constructions of two di↵erent probabilistic ontologies. One is used for identi-

fying frauds in public procurements in Brazil and the other is used for identifying terrorist

threats in the maritime domain. Both use cases demonstrate the advantages of PR-OWL 2

over its predecessor.

Chapter 1: Introduction

The same assumptions that were essential in the document web are still applied for the

Semantic Web (SW). They are radical notions of information sharing, which include [7]:

(i) the Anyone can say Anything about Any topic (AAA) slogan; (ii) the open world as-

sumption, i.e. there might exist more information out there that we are not aware of, and

(iii) nonunique naming, meaning that di↵erent people can assign di↵erent names to the

same concept. However, the Semantic Web di↵ers from its predecessors in the sense that

it intends to provide an environment not only for allowing information sharing but also for

making it possible to have the e↵ect of knowledge synergy. Nevertheless, this can lead to a

chaotic scenario with disagreements and conflicts.

I call an environment characterized by the above assumptions a Radical Information

Sharing (RIS) environment. The challenge facing SW architects is therefore to avoid the

natural chaos to which RIS environments are prone, and move to a state characterized by

information sharing, cooperation and collaboration. According to Allemang and Hendler

[7], one solution to this challenge lies in modeling. A model is a simplified abstraction

of some real world phenomenon, which, amongst other things, allows the organizing of

information for community use. Modeling is the process of constructing such a simplified

abstraction. Modeling supports information sharing in three ways: it provides a means for

human communication, it provides a way for explaining conclusions, and it provides the

managing of di↵erent viewpoints.

There is an immense variety of modeling processes, which, in turn, are supported by

di↵erent modeling languages. One of especial interest in this research is the Web Ontology

Language (OWL) [89, 104] which was intended to enable the achievement of the Semantic

Web full potential. According to [89] OWL “is intended to be used when the information

1

contained in documents needs to be processed by applications, as opposed to situations

where the content only needs to be presented to humans. OWL can be used to explicitly

represent the meaning of terms in vocabularies and the relationships between those terms.

This representation of terms and their interrelationships is called an ontology.”

One of the first definitions of ontology in the context of the Semantic Web was given by

Thomas Gruber [54].

An ontology is an explicit specification of a conceptualization. The term is

borrowed from philosophy, where an Ontology is a systematic account of Exis-

tence. For Artificial Intelligence (AI) systems, what “exists” is that which can

be represented. A conceptualization is an abstract, simplified view of the world

that we wish to represent for some purpose. Every knowledge base, knowledge-

based system, or knowledge-level agent is committed to some conceptualization,

explicitly or implicitly.

Appreciation is growing within the Semantic Web community of the need to represent

and reason with uncertainty. In recognition of this need, the World Wide Web Consor-

tium (W3C) created the Uncertainty Reasoning for the World Wide Web Incubator Group

(URW3-XG) in 2007 to identify requirements for reasoning with and representing uncer-

tain information in the World Wide Web. The URW3-XG concluded that standardized

representations were needed to express uncertainty in Web-based information [82]. A can-

didate representation for uncertainty reasoning in the Semantic Web is Probabilistic OWL

(PR-OWL) [27], an OWL upper ontology for representing probabilistic ontologies based on

Multi-Entity Bayesian Networks (MEBN) [78].

1.1 Problem Statement

Imagine an application where we try to identify and prevent frauds in public procurements.

Figure 1.1 shows a common approach to the problem. Most of the information associated to

public procurements are available in physical documents (Public Notices - Data). When a

2

procurement is audited, experts analyze those documents in search of information that will

provide evidence that the procurement process was done as described by law or that the

procurement is suspicious because it did not follow the expected procedures (Information

Gathering). Finally, that information is then stored in a database where it can be accessed

later (DB - Information). The problem the experts usually complain about is that they

spend a lot of time feeding all this information to the database, but the system does not

provide any useful knowledge, regarding fraudulent activities, based on the information

provided. I.e., the experts sill have to search through all that data in order to find evidence

of suspicious activities for every procurement.

Figure 1.1: A regular system for storing information about public procurements.

The problem is that there are many more procurements than experts capable of auditing

them. For example, the Brazilian Transparency Portal1 alone has over 1 billion items

of information stored in its database. The database covers over 5 trillion US Dollars in

Government expenditures, including procurements. This clearly shows that the experts are

experiencing an overload of information that makes it impossible to analyze every single

procurement.

A reasonable solution to this problem of information overload is to change the focus from
1This portal (http://www.portaldatransparencia.gov.br) is an initiative of the Brazilian O�ce of the

Comptroller General (CGU) that started in 2004. Its main objective is to make the expenditures of public
money more transparent by allowing any citizen to follow where the money is being spent in order to help
supervise and audit the Brazilian Government

3

http://www.portaldatransparencia.gov.br

Figure 1.2: An automated system for identifying and preventing frauds in public procure-
ments.

data driven to knowledge driven, as shown in Figure 1.2. In other words, we need some

kind of automated solution that has the experts’ knowledge represented in some model

(Design - UnBBayes2). Then machines can use this model to infer new knowledge, for

instance, if a procurement is suspicious of fraudulent activities, for all procurements and

using all the information available in a reasonable time (Inference - Knowledge). Then this

knowledge can be filtered so that only the procurements that show a probability higher

than a threshold, e.g. 20%, are automatically forwarded to the responsible department

along with the inferences about potential fraud and the supporting evidence (Report for

Decision Makers). Probabilistic Ontologies (POs) can be used to represent the experts’

knowledge in order to allow inferences like the one just described.

However, as a possible language for representing POs, PR-OWL still presents some
2The text in parenthesis refers to the block in the figure with the same label.

4

problems. As stated by Costa [27], a major design goal for PR-OWL was to attain com-

patibility with OWL. However, to date this goal has been only partially achieved, mostly

due to a couple of key issues not fully addressed in the original work. First, there is no

mapping in PR-OWL to properties of OWL. Second, although PR-OWL has the concept

of meta-entities, which allows the definition of complex types, it lacks compatibility with

existing types already present in OWL.

These problems have been noticed and stated in the literature. According to Predoiu

and Stuckenschmidt [113]:

PR-OWL does not provide a proper integration of the formalism of MEBN

and the logical basis of OWL on the meta level. More specifically, as the connec-

tion between a statement in PR-OWL and a statement in OWL is not formalized,

it is unclear how to perform the integration of ontologies that contain statements

of both formalisms.

Furthermore, one major problem is that probabilistic ontologies are complex and hard

to model. It is challenging enough to design models that use only logic or only uncertainty;

combining the two poses an even greater challenge. In fact, in the past few years I have

received a number of e-mails from researchers all around the world asking for information

and/or literature on how to build probabilistic ontologies. The problem is that there is no

published methodology specifically focused on probabilistic ontology engineering. Further-

more, probabilistic ontology engineering is a very challenging problem – something that

requires a significant learning curve. Therefore, this is a major issue.

Although there is now substantial literature about what PR-OWL is [27,29,31], how to

implement it [23, 20, 19, 26], and where it can be used [30, 32, 33, 77, 79, 80], little has been

written about how to model a probabilistic ontology.

This lack of methodology is not only associated with PR-OWL. Other languages that

use probabilistic methods for representing uncertainty on the SW have been advancing in

areas like inference [12, 122], learning [36, 86], and applications [14, 120, 87], but little has

been written on how to create such models from scratch. Example of such languages are

5

OntoBayes [136], BayesOWL [37], and probabilistic extensions of SHIF(D) and SHOIN(D)

[85]. Moreover, even first-order probabilistic languages like Markov Logic Network (MLN)

[40], which is also used for uncertainty reasoning on the SW [13,41], have the same limitation

on methodologies for creating models.

In the following subsections I will give one example for each of the current limitations

of PR-OWL related to its compatibility with OWL.

1.1.1 Lack of mapping to OWL

Suppose we have a well defined ontology described in OWL about the public procurement

domain. In such a domain, we would have a well defined semantics for concepts like procure-

ment, winner of a procurement, members of a committee responsible for a procurement, etc.

Figure 1.3 shows a light-weight ontology for this domain represented in Unified Modeling

Language (UML). For more details about UML, see Section 2.1.

Now, imagine we want to define some uncertain relations about this domain, e.g., it is

common to identify a front for an enterprise by looking at his/her income and the value of

a procurement the enterprise he/she represents won. For instance, if the enterprise won a

procurement of millions of dollars, but the responsible person for this enterprise makes less

than 10 thousand dollars a year, it is likely that this person is a front. Figure 1.4 shows

this probabilistic relation defined using PR-OWL in an open-source tool for probabilistic

reasoning, UnBBayes.

As it is expected, we have to make sure some conditions hold to be able to make

assertions about this probabilistic relationship. One of them is that the person we are

trying to determine as a possible front has to be responsible for the enterprise we are

analyzing. These conditions are represented in Figure 1.4 by the pentagon nodes (in green).

The probabilistic relation mentioned is represented by the trapezoid and rounded rectangle

nodes (in gray and yellow, respectively). The pentagon nodes are context nodes, the rounded

rectangle nodes are resident nodes, which represent a random variable (RV) and its local

probability distribution (LPD), and the trapezoid nodes are input nodes, which have their

6

Figure 1.3: A class diagram for the procurement domain.

LPD defined somewhere else. For more details about MEBN, see Section 3.1.

It is natural to assume that the data we have about this domain will be associated to

the ontological markups defined in OWL. In other words, our database will have instances

of persons and enterprises associated to their semantic meaning defined in OWL.

Having access to this information should be trivial once the domain ontology has been

defined and permission has been granted to retrieve data from the database. However, this

can only be achieved by developing a link between PR-OWL random variables (RVs) and

the concepts defined in OWL. The problem is that PR-OWL has no formal way to define a

link between RVs and OWL concepts.

7

Figure 1.4: Front of an Enterprise MFrag.

With this simple example, it is clear that every probabilistic extension made to a con-

cept has to keep a reference to its semantic definition, otherwise this definition will only be

a standard random variable without the knowledge of the semantics defined on the deter-

ministic ontology. That is, in order to achieve full compatibility with OWL, modifications

to PR-OWL that guarantee the preservation of OWL’s semantics are required.

1.1.2 Lack of support for OWL types

One of the main concerns when developing OWL [66] was to keep the same semantics of

its predecessors, RDF and XML, which meant reusing all the concepts already defined in

those languages, including primitive types, such as string, Boolean, decimal, etc. On the

other hand, PR-OWL does not make use of the primitive types used in OWL. For instance,

PR-OWL defines Boolean as an individual of the class MetaEntity, as shown in Figure 4.9,

but does not keep any relation to the Boolean type used in OWL.

If we wanted to define a continuous random variable for the annual income of a person in

PR-OWL, we would need to define the real numbers, even though they are already defined

in OWL. Moreover, concepts that use this primitive type in OWL would not be understood

in PR-OWL, in other words, they lack compatibility as far as primitive types are concerned.

8

Figure 1.5: Boolean individual defined in PR-OWL.

1.2 Research Contributions and Structure of this Disserta-

tion

Before I can describe how the limitations explained were addressed, Chapter 2 introduces

di↵erent approaches to modeling and how they di↵er from the perspective of achieving the

Semantic Web full potential. In it, it becomes evident the important role of ontological

languages, more specifically, of OWL. Then, Chapter 3 presents various extensions to First-

Order Logic (FOL) and ontology languages for allowing the representation of uncertainty. In

it, I explain the importance of being able to reason with uncertain information. Moreover,

besides explaining the basics of MEBN and PR-OWL 1, I also present related work for

representing uncertainty in the SW.

The problem of compatibility is discussed in Chapter 4. It describes the changes made

to PR-OWL by PR-OWL 2 to achieve full compatibility with OWL. The di�culty of this

9

kind of integration between probabilistic theories like PR-OWL and ontology languages like

OWL has been discussed in the literature. Poole et. al. [110] emphasizes that it is not

clear how to match the formalization of random variables from probabilistic theories with

the concepts of individuals, classes and properties from current ontological languages like

OWL. However, Poole et. al. [110] says that “We can reconcile these views by having

properties of individuals correspond to random variables.” This is the approach taken in

this work to integrate MEBN logic and the OWL language. Details of the syntax and

semantics of PR-OWL 2 are presented in Appendix A.

To address the lack of support in probabilistic ontology engineering, Chapter 5 describes

the new methodology for modeling probabilistic ontologies for semantic technologies. To

better explain how the methodology works and to verify it can be applied to di↵erent

scenarios, I describe step-by-step the construction of two di↵erent models from scratch.

One model is used for identifying frauds in public procurements in Brazil3 and the other is

used for identifying terrorist threats on the maritime domain4. In both cases, the advantages

are highlighted of PR-OWL 2 over PR-OWL 1.

Finally, Chapter 6 summarizes the work presented in this dissertation and presents future

directions for PR-OWL as well as for probabilistic ontology representation and modeling

for the Semantic Web as a whole.

The contributions of this work can be summarized as:

1. A formal and extended definition of PR-OWL including the connection between a

statement in PR-OWL and a statement in OWL.

2. PR-OWL 2 syntax - an upper-ontology that captures the formal definition described

above.

3. PR-OWL 2 semantics - a clear specification of those aspects of the mappings from
3This use case has been developed with the support of the Brazilian O�ce of the Comptroller General

(CGU), which has been providing the human resources and the information necessary to conduct this research
since 2008.

4This use case was developed as part of the PROGNOS project [32], which has been partially supported
by the O�ce of Naval Research (ONR), under Contract]: N00173-09-C-4008.

10

PR-OWL to OWL for which OWL has no formal semantics.

4. A proof of concept tool which allows the use of PR-OWL 2 to model probabilistic

ontologies developed as a plugin for UnBBayes.

5. Methodology for modeling PO, the Uncertainty Modeling Process for the Semantic

Web (UMP-SW).

6. Two use cases which use PR-OWL 2 and shows its benefits when compared to the

current version of PR-OWL.

11

Chapter 2: Di↵erent Approaches To Knowledge Modeling

Before analyzing di↵erent approaches to knowledge modeling, we will define some terms

that will be used from now on:

Classes represent concepts, which are understood in a broad sense. For instance, in the

procurement domain, the Goal class represents a specific objective that needs to be

achieved.

Instances are used to represent elements or individuals. For instance, build a bridge

and buy 500 chairs might be specific individuals of the class Goal.

Relations represent a link between classes. Although it is possible to represent a relation

between many classes at once, the most common is a binary relation, where the first

argument is known as the domain of the relation, and the second argument is the range.

For instance, classes are usually organized in taxonomies through which inheritance

mechanisms can be applied. The binary relation subclassOf is used to construct this

taxonomy (e.g. PublicServant – someone who works for the Government – might be

modeled as a subclass of Person).

Functions are similar to relations, however, the last element of a function is unique given

its preceding elements. For instance, a function EvaluateEnterprise applies a set

of score rules to compute the final score an enterprise receives when participating in

a specific procurement. For a given enterprise and procurement, there is exactly one

score; therefore, the relationship is functional.

Formal axioms are used to model conditions that are always true in the domain. Axioms

are commonly represented by first-order logic sentences. A common form for an

12

axiom is an if-then statement. For instance, if a person X is member of the committee

responsible for procurement Y, then this person X cannot submit a proposal for this

procurement Y. Axioms are often used for consistency checking and for inferring new

knowledge [50].

2.1 UML and ER

Unified Modeling Language (UML) [115] and Entity/Relationship (ER) [24] diagrams are

often used to organize information for community use. Some of the reasons to use these

tools are [50]: (i) UML and ER are easy to understand; (ii) there are standard graphical

representations for UML and ER diagrams; and (iii) many CASE tools are available to

support development of UML and ER representations.

UML models can be enriched by adding Object Constraint Language (OCL) [3, 133]

expressions. OCL is a declarative language for describing rules that apply to UML by

providing expressions that do not have the ambiguities of natural language, and avoid the

inherent di�culty of using complex mathematics.

In UML, classes are represented with rectangles divided into three parts: the name

(top), the attributes (middle), and the operations (bottom). Since operations are not used

in the context of the Semantic Web [50], we will not deal with them here. The attribute

types, possible attribute values, and default values are included in their description. For

instance, in Figure 2.1 Person is a class with attribute name of type String.

Instances of classes are represented as rectangles divided into two parts. The first

part is the name of the instance, followed by “:” and the name of the class it represents.

The second part contains the attributes of the instance and their respective values. For

example, Figure 2.2 shows four instances, winner1, participant2, participant3, and

participant4, of the class Enterprise.

Concept taxonomies are created through generalization relationships between classes.

These are shown on a UML diagram by a solid line extending from the more specific to

the more generic class, and ending with a large hollow triangle. In Figure 2.1, Person is a

13

Figure 2.1: A class diagram for the procurement domain.

14

Figure 2.2: A class diagram with instances of classes from the procurement domain.

generalization of PublicServant, thus it inherits its attribute name.

Binary relations are expressed as associations (solid arrows) between classes. In Fig-

ure 2.1 a PublicServant works for a PublicAgency. However, higher arity relations cannot

be represented directly in UML, though we can represent them by creating a class. This

class is associated with other classes that represent the relation arguments, as shown in the

ternary relation Contract also in Figure 2.1.

More complex modeling such as cardinalities of the attributes, disjoint and exhaustive

knowledge, and formal axioms can be represented in UML only with the use of OCL.

However, according to [50], there is no standard support for this language in common

CASE tools. Because of this, and because UML models lack formal semantics, expressions

in OCL cannot be evaluated by many CASE tools, and cannot be shared among developers.

In ER, with the common extension of generalization relationships between entities, it

is possible to represent classes through the use of ER-entities. Furthermore, classes can

be organized in taxonomies with the generalization relationship between ER-entities. For

15

Figure 2.3: An extended entity-relationship diagram for the procurement domain.

example, Figure 2.3 shows the class PublicServant, which is a subclass of the class Person.

It is also possible to represent attributes and their types through ER-attributes. In

Figure 2.3 the class Person has the attributes name and ID with types VARCHAR(255) and

INTEGER respectively.

Ad hoc relations can be represented through ER-relations between ER-entities. These

relations can have any arity and can have specified cardinalities. Figure 2.3 presents several

relations. One of these is Apply, which relates one or more ScoreRule to just one Pro-

curement. Although a ternary relation can be easily represented, none were included in

Figure 2.3 for reasons of clarity.

Instances can be created through the use of the insert sentence from the Structured

Query Language (SQL), which essentially becomes a filled row in its respective table.

According to [50], representing formal axioms in ER requires either extending the lan-

guage, or using complementary notations, such as first-order logic or production rules.

16

2.2 Knowledge Representation and Reasoning

We have seen in Section 2.1 that UML and ER are able to represent classes, attributes,

relations, and instances. However, they fall short when dealing with formal axioms. Knowl-

edge representation systems, on the other hand, can naturally represent formal axioms.

Furthermore, there are standard and readily available formal systems for reasoning with

axioms.

According to [83] “Knowledge Representation is the field of study within AI concerned

with using formal symbols to represent a collection of propositions believed by some putative

agent.” In knowledge-based systems, the information believed by this putative agent is usu-

ally explicitly represented by a collection of symbolic structures, in other words, represented

on the knowledge base (KB). Reasoning, on the other hand, is the process of manipulating

these symbols in order to produce new information that is not explicitly represented in the

KB.

To see the benefits of using Knowledge Representation and Reasoning (KR&R), we will

augment the models presented in Section 2.1 by introducing axioms related to the domain.

Based on Law No 8,666/93, a member of a procurement committee must not be related to

the enterprises that are participating in the procurement. For the sake of simplicity we will

only deal with the relation that a public servant cannot be a brother/sister, son/daughter,

or mother of someone who is responsible for that enterprise. Consider the following simple

representation in Listing 2.1, expressed in standard first-order logic notation [42].

To be concise, we will not define the entire model. We assume the definitions are set

up to reproduce the models from Section 2.1. Nevertheless, with the information pre-

sented above, we can identify an inconsistency. By combining lines 12, 13, 02, and 04,

we can infer Related(John,Bill). However, if we combine lines 15, 20, 19, and 05-06,

we can infer ¬Related(John,Bill). Therefore, we have encountered an inconsistency in

our KB. Fortunately, this representation allows us to debug, and to discover that this pro-

curement is actually violating the law. We can then fix the inconsistency by modifying

the rule in lines 05-06 to say that if a member of a procurement committee is related

17

to the enterprises that are participating in the procurement, then there is a violation of

the law, e.g., 8y9x,z,r Committee(x,y) ^ Participant(z,y) ^ Responsible(r,z) ^

Related(x,r) ! ViolationOfLaw(y).

Listing 2.1: Simple KR&R example in the procurement domain

1 8x Publ icServant (x) ! Person (x)

2 8x , y , z Mother (x , y) ^ Mother (z , y) ! S i b l i n g (x , z)

3 8x , y Mother (x , y) ! Related (x , y)

4 8x , y S i b l i n g (x , y) ! Related (x , y)

5 8x , y , z , r Committee (x , y) ^ Par t i c i pan t (z , y) ^ Respons ib le (r , z)

6 ! ¬Related (x , r)

7 Publ icServant (John)

8 Publ icServant (Mary)

9 Pub l i cServer (Dan)

10 Person (B i l l)

11 Person (Rebecca)

12 Mother (John , Rebecca)

13 Mother (B i l l , Rebecca)

14 Procurement (Procurement1)

15 Committee (John , Procurement1)

16 Committee (Mary , Procurement1)

17 Committee (Dan , Procurement1)

18 Ente rp r i s e (Winner1)

19 Respons ib l e (B i l l , Winner1)

20 Par t i c i pan t (Winner1 , Procurement1)

One could argue that this restriction can be easily implemented by adding an operation

isCommitteeRelatedToParticipants() to the class Procurement from our UML model in

Section 2.1, for instance. This operation would return true if there is a relation, as defined

above, between one of the members of the committee and one of the responsible persons

of the enterprises that participates in the procurement. However, UML lacks a formal way

to define such an operation in detail, leaving its implementation open to the implementer.

18

This has at least two main disadvantages. First, every system that uses this model has to

implement its own interpretation of the operation. In addition to creating duplication of

e↵ort, this could easily lead to di↵ering interpretations and inconsistent implementations.

Second, if for some reason the rule changes (e.g., we realize we need to include father in our

relation), then every interpretation of the model, i.e. every system that uses this model,

would have to change its implementation, instead of just changing the model as we would do

in a knowledge-based system. This simple example illustrates several advantages of using

KR&R in modeling.

One of the main advantages of knowledge-based systems is that they take action based

on what our putative agent believes, and not only on what is explicitly represented in the

KB. We could easily see that in the example given above where the information inferred by

the system was crucial in finding an infringement of the law.

In fact, the inference process described above is entailment, which is exactly what makes

logic an important element of KR&R, since logic is the study of entailment relations. Ac-

cording to [83,11], entailment is defined as:

Definition 2.1. We say that the propositions represented by a set of sentences S entail

the proposition represented by a sentence p when the truth of p is implicit in the truth of

the sentences in S. In other words, entailment means that if the world is such that every

element of S comes out true, then p does as well.

According to [83,11], a knowledge-based system can be seen as a system that performs

some problem-solving activity. An example of such activity is verifying whether there is a

member of the committee who is related to one of the responsible persons of an enterprise

that participates in a specific procurement. It is able to do so by looking at what it already

knows: Is a member mother of a responsible person of a participant enterprise? Does

a member have the same mother as a responsible person of a participant enterprise? In

order to answer such questions the system has to look at the explicit information available

in its KB and make inferences based on it. Therefore, it is reasonable to separate the

representation and management of the KB from the rest of the system. In other words,

19

it is not important for a problem-solving system how the knowledge is stored or how the

reasoning is done to produce new knowledge. This kind of system is only concerned with

answering its domain-specific questions, which in this case would be to answer questions

related to fraud in public procurements.

According to [83,11], “It is the role of a knowledge representation system to manage the

KB within a larger knowledge-based system. Its job is to make various sorts of information

about the world available to the rest of the system based on the information it has obtained,

perhaps from other parts of the system, and by using whatever reasoning it can perform.

Therefore, the job of the KR system is smaller than that of a full knowledge-based problem

solver, but larger than that of a database management system, which would merely retrieve

the contents of the KB.”

2.3 Ontology and the Semantic Web

According to [10] the Semantic Web is a web of data that can be processed directly or

indirectly by machines. This technology will drive us to a new phase where the arduous

and manual task of identifying, accessing and utilizing information is assigned to computers,

allowing human beings to change their focus from data driven to knowledge driven activities.

The W3C [60] states that ontologies are envisioned as the technology providing the

cement for building the SW. The term ontology was taken from Philosophy, where it means

a systematic explanation of being. In the field of knowledge representation, an ontology

contains a common set of terms for describing and representing a domain in a way that

allows automated tools to use stored data in a context-aware fashion, intelligent software

agents to a↵ord better knowledge management, and many other possibilities brought by a

standardized, more intensive use of meta-data. [127] defines ontology as:

Definition 2.2. An ontology is a formal, explicit specification of a shared conceptualiza-

tion. Conceptualization refers to an abstract model of some phenomenon in the world by

having identified the relevant concepts of that phenomenon. Explicit means that the type

20

of concepts used, and the constraints on their use are explicitly defined. Formal refers to

the fact that the ontology should be machine-readable. Shared reflects the notion that an

ontology captures consensual knowledge, that is, it is not private of some individual, but

accepted by a group.

Since ontologies are used in di↵erent communities and with di↵erent objectives, [130]

provided a new definition to make it more popular in all these di↵erent disciplines:

Definition 2.3. An ontology may take a variety of forms, but it will necessarily include a

vocabulary of terms and some specification of their meaning. This includes definitions and

an indication of how concepts are inter-related which collectively impose a structure on the

domain and constrain the possible interpretation of terms.

According to [50] there are basically two distinct classes of ontologies: lightweight and

heavyweight. The first describes the main concepts, their attributes and relationships while

the second adds axioms that make the possible valid interpretations closer to the true

intended meaning.

An ontology is used to define the vocabulary that will be shared between di↵erent agents.

The agreement of using and accepting the definitions in this vocabulary is called ontological

commitment [54]. The main idea behind this shared vocabulary is to allow di↵erent agents,

that have di↵erent information about the domain of discourse, to make assertions about

their knowledge and ask queries to other agents about information they might be interested

in.

Next, I will show the advantages of using ontology and the semantic web, then I will

present the origin and an overview of Web Ontology Language (OWL) which is the basis

for the probabilistic web ontology language, PR-OWL, I am extending in this dissertation.

2.3.1 The Advantages of Ontology and the Semantic Web

How do Ontology and the SW di↵er from what we have seen that UML, ER, and knowledge-

based KR&R systems can model? Well, as seen before, the SW is designed for RIS envi-

ronments, which are characterized by the AAA slogan, the open world assumption, and

21

nonunique naming. But this style of information gathering can create a chaotic landscape

rife with confusion, disagreement and conflict. UML, ER, and knowledge-based KR&R

systems were developed under a more constrained paradigm for information sharing, and

lack some important features needed to contain the chaos to which RIS environments are

prone. E.g., there is no formal way to allow anyone to say anything about any topic (AAA

slogan) on the web in these languages. A number of SW modeling languages have been

developed expressly for the RIS environments. These languages di↵er in their capabilities

and their level of expressivity, but all incorporate features necessary to foster cooperative

and collaborative information sharing in RIS environments.

It is easy to see that our domain of fraud detection/prevention is a RIS environment.

The data CGU has available does not come only from its audits and inspections. In fact,

much complementary information can be retrieved from other Federal Agencies, including

Federal Revenue Agency, Federal Police, and others. Imagine we have information about the

enterprise that won the procurement, and we want to know information about its owners,

such as their personal data and annual income. This type of information is not available

at CGUs Data Base (DB), but must be retrieved from the Federal Revenue Agencys DB.

Once the information about the owners is available, it might be useful to check their criminal

history. For that (see Figure 2.4), information from the Federal Police must be used. In

this example, we have di↵erent sources saying di↵erent things about the same person: thus,

the AAA slogan applies. Moreover, there might be other Agencies with crucial information

related to our person of interest; in other words, we are operating in an open world. Finally,

to make this sharing and integration process possible, we have to make sure we are talking

about the same person, who may (especially in case of fraud) be known by di↵erent names

in di↵erent contexts.

2.3.2 The Beginning of OWL

The Web Ontology Language (OWL) was developed by the World Wide Web Consortium

(W3C) Web Ontology Working Group and is an e↵ort in W3C’s Semantic Web activity.

22

Figure 2.4: Retrieving information through the SW for the procurement domain.

As such, it had to be compatible with the vision of a stack of languages including XML

and RDF. Besides that, by the time the W3C started defining OWL specification, there

were already some other languages designed to be used on the Web, including OIL [43] and

DAML+OIL [65].

In fact, the main influences in OWL’s design were [66] the DAML+OIL language, the

Description Logics (DL), the frames paradigm, and the RDF language, a requirement for

upwards compatibility which lead to the RDF/XML exchange syntax.

The frames paradigm, proposed by Minsky [92], is a knowledge representation scheme

that organizes knowledge into chunks called frames. These frames should described the

main ideas contained in some typical situation, for example participating in a procurement

or analyzing the proposals, by putting all relevant information for these situations together.

Collections of interconnected frames are then organized in frame systems.

23

According to [44], features that are common to frame-based systems are:

• Frames are organized in (tangled) hierarchies;

• Frames are composed out of slots (attributes) for which fillers (scalar values, references

to other frames or procedures) have to be specified or computed; and

• Properties (fillers, restriction on fillers, etc.) are inherited from superframes to sub-

frames in the hierarchy according to some inheritance strategy.

These organizational principles turned out to be very useful, and, indeed, the now

popular object-oriented languages have adopted these organizational principles. For the

same reason, the surface structure of the OWL language (as seen in the abstract syntax)

was influenced by the frames paradigm.

According to [8], Description Logics are a family of languages which allow the represen-

tation of domain-specific knowledge in a structured and formal way. Its name comes from

the fact that important notions of the domain are described by concept descriptions and

the fact that it is equipped with a formal, logic-based semantics.

The Semantic Web depends on the availability of a well-defined semantics and powerful

reasoning tools, which are both provided by Description Logics, that is why OWL’s formal

specification was particularly influenced by Description Logics [66].

DAML+OIL [65] is the result of a merger between DAML-ONT, a language developed

as part of the US DARPA Agent Markup Language (DAML) program) and the Ontology

Inference Layer (OIL) [43], developed by a group of (mostly) European researchers.

DAML+OIL is based on common ontological primitives from Frame languages, which

makes it human understandable. Its syntax is based on RDF Schema, which provides web

compatibility. Finally, its semantics can be defined by a translation into the expressive

DL SHIQ [67], a DL language that is decidable, even though its worst-case complexity is

exponential. Nevertheless, in practice it does behave quite well [8].

24

2.3.3 The Web Ontology Language (OWL)

The main concepts available in OWL are [89]:

Class A class defines a group of individuals that belong together because they share some

properties;

rdfs:subClassOf Class hierarchies may be created by making one or more statements that

a class is a subclass of another class;

rdf:Property Properties can be used to state relationships between individuals or from

individuals to data values;

rdfs:subPropertyOf Property hierarchies may be created by making one or more state-

ments that a property is a subproperty of one or more other properties;

rdfs:domain A domain of a property limits the individuals to which the property can be

applied;

rdfs:range The range of a property limits the individuals that the property may have as

its value; and

Individual Individuals are instances of classes, and properties may be used to relate one

individual to another.

Most of these basic terms, except rdfs:subPropertyOf, can also be represented in

languages like UML and ER diagrams. The expressive power of OWL comes from features

like defining classes as complex construction using other classes and restriction on properties.

An example of a simple class definition using intersection of other classes is the class

CorruptAgent, which can be defined as the intersection of PublicServant and Corrupt-

Person. In OWL this would be defined as shown in Listing 2.2.

A more complex example, which uses restriction on properties, is the class Mother,

which can be defined as a Person of female sex that has at least one child. In OWL this

would be defined as shown in Listing 2.3.

25

Listing 2.2: Definition of the class CorruptAgent in OWL
1 <owl :C la s s rd f : abou t=”CorruptAgent”>
2 <ow l : e qu i va l en tC l a s s>
3 <owl :C la s s>
4 <ow l : i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
5 <r d f :D e s c r i p t i o n rd f : about=”CorruptPerson”/>
6 <r d f :D e s c r i p t i o n rd f : about=” Publ icServant ”/>
7 </ ow l : i n t e r s e c t i o nO f>
8 </ ow l :C la s s>
9 </ ow l : e qu i va l en tC l a s s>

10 </ owl :C la s s>

These are just a few of the more expressive representations that OWL allows, which can-

not be represented in languages like UML and ER diagrams. OWL also provides vocabulary

for (in)equality, property characteristics and restrictions, cardinality, Boolean operators, etc.

For more details on the OWL’s syntax and semantics see [123].

Listing 2.3: Definition of the class Mother in OWL
1 <owl :C la s s rd f : abou t=”Mother”>
2 <ow l : e qu i va l en tC l a s s>
3 <owl :C la s s>
4 <ow l : i n t e r s e c t i o nO f rd f :parseType=” Co l l e c t i on ”>
5 <r d f :D e s c r i p t i o n rd f : about=”Person”/>
6 <ow l :R e s t r i c t i o n>
7 <owl :onProperty r d f : r e s o u r c e=”hasChi ld ”/>
8 <owl:someValuesFrom rd f : r e s o u r c e=”Person”/>
9 </ ow l :R e s t r i c t i o n>

10 <ow l :R e s t r i c t i o n>
11 <owl :onProperty r d f : r e s o u r c e=”hasSex”/>
12 <owl :hasValue r d f : r e s o u r c e=” female ”/>
13 </ ow l :R e s t r i c t i o n>
14 </ ow l : i n t e r s e c t i o nO f>
15 </ ow l :C la s s>
16 </ ow l : e qu i va l en tC l a s s>
17 </ owl :C la s s>

In 2009 a new version of OWL was proposed for recommendation [53]. OWL 2 is quite

similar to its previous version. The central role of RDF/XML, the role of other syntaxes, and

the relationships between the Direct and RDF-Based semantics (i.e., the correspondence

theorem) have not changed. More importantly, backwards compatibility with OWL 1 is, for

26

all intents and purposes, complete: all OWL 1 Ontologies remain valid OWL 2 Ontologies,

with identical inferences in all practical cases.

OWL 2 adds new functionality with respect to OWL 1. Some of the new features are

syntactic sugar (e.g., disjoint union of classes) while others o↵er new expressivity, including:

• Keys;

• Property chains;

• Richer datatypes, data ranges;

• Qualified cardinality restrictions;

• Asymmetric, reflexive, and disjoint properties; and

• Enhanced annotation capabilities.

For more information about OWL 2 see [53].

27

Chapter 3: Representing Uncertainty

Consider the example from Section 2.2, in which it is defined that a member of the pro-

curement must not be related to a person responsible for an enterprise that is participating

in the same procurement. Current SW deterministic reasoning algorithms will either con-

sider this relation to be true, false, or unknown, with no way of expressing gradations of

plausibility.

This is acceptable in situations where complete information is available. However, in

open world environments such as the Web, partial (not complete) or approximate (not

exact) information is more the rule than the exception. For example, we may not have

the information from lines 11 and 12 from Section 2.2 stating that John and Bill have the

same mother, Rebecca. However, we do have information about John and Bill stating that

they have a common last name and live at the same address. Although we are uncertain

about whether or how they are related, there is evidence suggesting they are. It is impor-

tant to consider that information when reasoning about possible violations of procurement

regulations.

Although the above and similar examples imply the need for principled representation

and reasoning with uncertainty within the SW, current SW applications (including current

automated reasoning methods) are primarily based on classical logic. This includes OWL,

the W3C standard web ontology language, which has its logical basis in classical description

logic, and therefore lacks built-in support for uncertainty. This is a major shortcoming

for a technology intended to operate in RIS environments. The W3C responded to this

limitation by initiating the Uncertainty Reasoning for the World Wide Web Incubator group

(URW3-XG), created in 2007 and concluded a year later. The URW3-XG concluded that

standardized representations were needed to express uncertainty in Web-based information

[82].

28

Uncertainty is especially important to applications such as corruption prevention, in

which perpetrators seek to conceal illicit intentions and activities. To address the SW

lack of support for uncertainty, Costa [27] proposed a Bayesian framework for probabilistic

ontologies. Probabilistic ontologies have the expressiveness required for SW applications,

and yet provide a principled logical basis for representing and reasoning under uncertainty.

The probabilistic ontology language PR-OWL [27, 30] is based on Multi-Entity Bayesian

Networks (MEBN) [78,76] a probabilistic logic that combines the expressive power of First-

Order Logic (FOL) with Bayesian networks’ ability to perform plausible reasoning.

3.1 Multi-Entity Bayesian Network (MEBN)

Multi-Entity Bayesian Networks (MEBN) extend Bayesian Networks (BN) to achieve first-

order expressive power. MEBN represents knowledge as a collection of MEBN Fragments

(MFrags), which are organized into MEBN Theories (MTheories).

An MFrag contains random variables (RVs) and a fragment graph representing depen-

dencies among these RVs. It represents a repeatable pattern of knowledge that can be

instantiated as many times as needed to form a BN addressing a specific situation, and thus

can be seen as a template for building and combining fragments of a Bayesian network.

It is instantiated by binding its arguments to domain entity identifiers to create instances

of its RVs. There are three kinds of nodes: context, resident and input. Context nodes

represent conditions that must be satisfied for the distributions represented in the MFrag

to apply. Input nodes may influence the distributions of other nodes in an MFrag, but

their distributions are defined in their home MFrags. Distributions for resident nodes are

defined within the MFrag by specifying local distributions conditioned on the values of the

instances of their parents in the fragment graph.

A set of MFrags represents a joint distribution over instances of its random variables.

MEBN provides a compact way to represent repeated structures in a BN. An important

advantage of MEBN is that there is no fixed limit on the number of RV instances, and the

29

random variable instances are dynamically instantiated as needed.

An MTheory is a set of MFrags that collectively satisfy conditions of consistency ensuring

the existence of a unique joint probability distribution over its random variable instances.

To apply an MTheory to reason about particular scenarios, one needs to provide the

system with specific information about the individual entity instances involved in the sce-

nario. Upon receipt of this information, Bayesian inference can be used both to answer

specific questions of interest (e.g., how likely is it that a particular procurement is being

directed to a specific enterprise?) and to refine the MTheory (e.g., each new situation in-

cludes additional data about the likelihood of fraud for that set of circumstances). Bayesian

inference is used to perform both problem specific inference and learning from data in a

sound, logically coherent manner.

3.2 Probabilistic Web Ontology Language (PR-OWL)

The common approach to representing uncertainty in knowledge representation languages

where uncertainty has been introduced as an afterthought, is to use simple XML tags to

represent a number between 0 and 1, which is the probability value. However, this is just

one aspect of probabilities and according to various authors, not the most relevant one. In

fact, researchers have stated in may instances the importance of structural information in

probabilistic models (see [119]). For instance, [121] stated that probability is more about

structure than it is about numbers.

PR-OWL is a language for representing probabilistic ontologies. Probabilistic ontologies

go beyond simply annotating ontologies with probabilities to provide a means of expressing

subtle features required to express a first-order Bayesian theory. Because PR-OWL is based

on MEBN logic, it not only provides a consistent representation of uncertain knowledge that

can be reused by di↵erent probabilistic systems, but also allows applications to perform

plausible reasoning with that knowledge, in an e�cient way. Work on PR-OWL is based

on the following definition of a probabilistic ontology [27]:

30

Definition 3.1. A probabilistic ontology is an explicit, formal knowledge representation

that expresses knowledge about a domain of application. This includes:

1. Types of entities existing in the domain;

2. Properties of those entities;

3. Relationships among entities;

4. Processes and events that happen with those entities;

5. Statistical regularities that characterize the domain;

6. Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge;

7. Uncertainty about all the above forms of knowledge;

where the term entity refers to any concept (real or fictitious, concrete or abstract) that

can be described and reasoned about within the domain of application.

Probabilistic ontologies are used for the purpose of comprehensively describing knowl-

edge about a domain and the uncertainty associated with that knowledge in a principled,

structured, and sharable way. PR-OWL was developed as an extension enabling OWL on-

tologies to represent complex Bayesian probabilistic models in a way that is flexible enough

to be used by diverse Bayesian probabilistic tools based on di↵erent probabilistic technolo-

gies (e.g. PRMs, BNs, etc). More specifically, PR-OWL is an upper ontology (i.e. an

ontology that represents fundamental concepts that cross disciplines and applications) for

probabilistic systems. PR-OWL is expressive enough to represent even the most complex

probabilistic models. It consists of a set of classes, subclasses and properties that collectively

form a framework for building probabilistic ontologies.

OWL 1 has three di↵erent versions with increasing expressive power designed for specific

communities of developers and users. The least expressive version is OWL Lite, which has

a limited set of simple restrictions. The next step in expressiveness in the OWL family

is OWL DL, which is based on Descriptive Logic and aims to maximize expressiveness

31

while maintaining completeness (all logical consequences are provable) and decidability (all

proofs terminate in finite time). OWL-DL has all OWL constructions, but there are certain

restrictions on use. The most expressive version, OWL Full, was built for users who want

the strongest representational power possible in OWL format. As a consequence, there

are no guaranties of computability. Following the same reasoning, a PR-OWL Lite version

could be created as suggested in [27] by including some restrictions.

OWL 2, on the other hand, introduces the concept of profiles. According to [53], profiles

are sub-languages of OWL 2. As such, they are more restrictive than OWL DL. Three

profiles are described in OWL 2: OWL EL, OWL QL, and OWL RL. OWL EL is intended for

applications that use large ontologies with focus on performance. OWL QL is more suitable

to lightweight ontologies that need to access data via relational queries, like SQL. Finally,

OWL RL is recommended for lightweight ontologies that need to access and manipulate

data in the form of RDF triples.

PR-OWL was proposed as an extension to the OWL language based on MEBN, which

can express a probability distribution on interpretations of any first-order theory. As a

consequence, there are no guaranties that reasoning with PR-OWL ontology will be e�cient

or even decidable [27]. For problems in which computational e�ciency is a concern, well-

known classes of computationally e�cient Bayesian theories can be represented in PR-OWL.

PR-OWL was built to be interoperable with non-probabilistic ontologies. Since PR-OWL

adds new definitions to OWL while retaining backward compatibility with its base language,

OWL-built legacy ontologies will be able to interoperate with newly developed probabilistic

ontologies. However, the ontology’s probabilistic definitions have to form a valid complete

or partial MTheory. Figure 3.1 (from [27] page 149) shows the main concepts involved in

defining an MTheory in PR-OWL.

In the diagram, ellipses represent general classes while arrows represent the main re-

lationships between these classes. A probabilistic ontology (PO) has to have at least one

individual of class MTheory, which is basically a label linking a group of MFrags that col-

lectively form a valid MTheory. In actual PR-OWL syntax, that link is expressed via the

32

Figure 3.1: PR-OWL simple model (reproduced with permission from Costa [27]).

object property hasMFrag (which is the inverse of object property isMFragIn). Individu-

als of class MFrag are comprised of nodes (not shown in the picture). Each individual of

class Node is a random variable (RV) and thus has a mutually exclusive and collectively ex-

haustive set of possible states. In PR-OWL, the object property hasPossibleValues links

each node with its possible states, which are individuals of class Entity. Finally, random

variables (represented by the class Node in PR-OWL) have unconditional or conditional

probability distributions, which are represented by class ProbabilityDistribution and

linked to their respective nodes via the object property hasProbDist.

Figure 3.2 (from [27] page 150) depicts the main elements of the PR-OWL language,

its subclasses, and the secondary elements necessary for representing an MTheory. The

relations necessary to express the complex structure of MEBN probabilistic models using

the OWL syntax are also depicted.

The first step towards building a probabilistic ontology as defined above is to import

the PR-OWL ontology into an ontology editor (e.g., OntoEdit, Protégé, Swoop, etc.) and

start constructing the domain-specific concepts using the PR-OWL definitions to represent

uncertainty about their attributes and relationships. Using this procedure, a knowledge

engineer is not only able to build a coherent MTheory and other probabilistic ontology

elements, but also make it compatible with other ontologies that use PR-OWL concepts.

However, building MFrags this way is a manual, error prone, and tedious process that

requires deep knowledge of the logic and of the data structures of PR-OWL in order to

33

Figure 3.2: PR-OWL detailed model (reproduced with permission from Costa [27]).

avoid errors or inconsistencies. UnBBayes [2] changes all that by providing a GUI-based

editing process for building probabilistic ontologies based on the PR-OWL upper ontology

for probabilistic theories [23]. Another important feature is the ability to save and open

models created by the UnBBayes GUI in PR-OWL format, with backwards compatibility

to OWL through the use of the Protégé API. Protégé [1] is an ontology editor and a flexible

and configurable framework for building knowledge-based tools and applications. Protégé

was developed by the Stanford Center for Biomedical Medical Informatics Research.

The major advantages of using PR-OWL are its flexibility and representational power,

both inherited from the fact that the language is based on MEBN, a full integration of First-

Order Logic (FOL) and probability theory that merges the expressiveness of the former

with the inferential power of the latter. UnBBayes leverages this power with a built-in

MEBN reasoner [26]. The prospective reader can find additional details on PR-OWL at

http://www.pr-owl.org.

34

http://www.pr-owl.org

3.3 Related Work

The past few years have witnessed an increasingly mature body of research on the Semantic

Web, with new standards being developed and more complex use cases being proposed and

explored. As complexity increases in SW applications, so does the need for principled means

to cope with uncertainty inherent to real world SW applications. Not surprisingly, several

approaches addressing uncertainty representation and reasoning in the Semantic Web have

emerged. This Section will give a brief overview on those di↵erent approaches and how they

relate to the work being proposed in PR-OWL 2.

3.3.1 First-Order Probabilistic Languages (FOPL)

Just as propositional logic is not enough to represent most of the real-world applications in

the SW, propositional probabilistic models, such as Bayesian networks (BN) and Markov

networks (MN) are insu�cient to leverage uncertainty reasoning in the SW. First, they do

not represent repeated structure, such as uncertainty about an attribute that applies to all

instances of a given class. Second, they define probability distributions only for a fixed and

predefined set of random variables.

Therefore, the need for more expressive probabilistic models becomes evident. This role

can be filled by first-order probabilistic languages (FOPLs), which are languages that can

model large families of random variables compactly by abstracting over objects, the same

way first-order logic leverages propositional logic [91].

Over the last few years, a plethora of FOPL have been proposed. To better understand

their similarities and di↵erences, Milch and Russell [91] proposed a taxonomy (see Figure 3.3

from [91] page 3), which will be described next.

The first characteristic to distinguish the di↵erent FOPLs is their outcome spaces, in

other words, the sets of outcomes to which they assign probabilities. The most common

outcome space is a set of relational structures, which are similar to graphs (as seen in

BNs and MNs) where the nodes represent objects in the domain and the edges represent

35

probabilistic relations.

According to Milch and Russell [91] one reason for the variety of FOPLs is the di↵erent

interpretations associated to relational structures. In logic, a relational structure is repre-

sented by the domain of discourse and an interpretation of the language over the domain.

Another interpretation of relational structures can be the thought of as instances of a rela-

tional database schema. In statistics, possible outcomes are seen as instantiations of a set

of random variables.

Examples of languages that follow the logic view, where a distribution is defined over the

logical model structure, include, amongst others, Multi-Entity Bayesian Networks (MEBNs)

[78], Relational Bayesian Networks (RBNs) [69], Bayesian Logic (BLOG) [90], and Markov

Logic Networks (MLNs) [40]. Probabilistic Relation Models (PRMs) [107] is one of the

distinct languages that follow the database view. Finally, the statistical view on relational

structure is the basis for the plates model underlying Bayesian inference Using Gibbs Sam-

pling (BUGS) [125].

Even though they have di↵erent views on their outcome space, they all fall into the

category of relational structures, as Milch and Russell [91] have defined it. Two distinct

languages that have di↵erent outcome spaces are Stochastic Logic Programs (SLPs) [99]

and IBAL [106].

On the one hand, SLPs define a distribution over proofs from a given logic program.

If a particular goal predicate R is specified, then an SLP also defines a distribution over

tuples of logical terms: the probability of a tuple (t1, . . . , t
k

) is the sum of the probabilities

of proofs of R(t
i

, . . . , t

k

).

On the other hand, IBAL is a general-purpose programming language with stochastic

choices, where distributions are defined over environments that map symbols to values.

Although these values can be the same as states of random variables in BNs, for instance,

they can also be other environments, or even functions.

The second characteristic used to define the taxonomy for FOPLs is the specificity of

the language. Amongst the languages that have relational structures as their outcome

36

Figure 3.3: A taxonomy of first-order probabilistic languages (reproduced with permission
from Milch and Russell [91]).

space, most of them fully define a distribution and some of them only impose constraints

on a distribution. Halpern’s logic of probability on possible worlds [58] is an example of

languages that generally do not fully define a distribution, instead, they usually define

particular marginal probabilities.

The third characteristic taken into consideration on the taxonomy from Figure 3.3 is

the parameterization, which is basically broken down into two categories, those based on

Bayesian Networks (BNs), which use conditional probability distributions (CPDs) and those

based on Markov Networks (MNs), which use weights to define the relative probabilities of

instantiations.

As expected, there is a trade-o↵ between FOPLs that use CPDs and the ones that

use weights. The trade-o↵ comes from the trade-o↵ already well-known in the literature

comparing BNs and MNs (see [105] Chapter 3 for details). Examples of languages that uses

37

CPDs are MEBN [78], PRM [107], and BLOG [90], while MLN [40] is an example of FOPL

that uses weights. The following is a summary of this trade-o↵ from [91].

On the one hand languages using CPDs according to Milch and Russell [91] have several

advantages:

. . . the parameters have clear interpretations as prior and conditional probabili-

ties, and can be estimated from fully observed data using elementary formulas.

Even more importantly, the parameters are modular: they reflect causal pro-

cesses that apply regardless of the relational skeleton1.

However, one major drawback is that acyclicly relations are not allowed, which can

be hard to impose on every possible relational structure. Besides, some probabilistic rela-

tions are just hard to represent using directed models (e.g. BNs) and are more naturally

represented in undirected models (e.g. MN). Milch and Russell [91] present some specific

examples on the pros and cons of both approaches.

On the other hand, in languages using weights, there is no acyclic restriction. However,

parameters for these models cannot be found using simple formulas, and according to Milch

and Russell [91]:

. . . we need to ensure that the relational skeletons in the training set reflect the

diversity of relational skeletons that may be encountered in the test data.

For more information on this characteristic of conditional probabilities versus weights,

see Section 2.3 in [91].

The fourth characteristic on the taxonomy of FOPL is the decomposition. Some lan-

guages stand out since they restrict their CPDs to be only deterministic and allow proba-

bilistic assignments only to variables with no parents. Examples of languages that impose

this restriction are PRISM [117,118], probabilistic Horn abduction [108], independent choice

logic (ICL) [109], and Logic Programs with Annotated disjunctions (LPADs) [131].
1A relational skeleton is a partial specification of a database instance with values specified for all primary

and foreign keys. However, the attribute values are left unspecified [48].

38

Finally, the last characteristic is whether the language supports unknown objects, or if

it requires the set of objects to be specified in the relational skeleton. Only three languages

have unknown objects as a fundamental concept present on their semantics, PRM [107],

BLOG [90], and MEBN [78]. All the others assume that objects are in one-to-one corre-

spondence with a given set of constant symbols, or grounding of the language. This feature

is especially important in domains where reports about objects are received, but there is

no way of knowing in advance if this object is already present in our knowledge base or if

it is a new one.

3.3.2 Probabilistic Languages for the SW

In the past few years, as the Semantic Web community has developed standards and more

complex use cases, appreciation has grown of the need for principled approaches for repre-

senting and reasoning under uncertainty. As a consequence, several approaches to uncer-

tainty reasoning for the Semantic Web (SW) have emerged [27, 37, 61, 71, 85, 103, 126, 128].

This Section will focus on approaches that use probabilistic methods for representing un-

certainty on the SW. The main reason for choosing these approaches is that, as stated by

Predoiu and Stuckenschmidt [113], probabilistic methods are a natural choice for plausible

reasoning on the SW, since great benefit could come for the SW with a tight integration

with the machine learning and information retrieval techniques, which in most cases are

based on probabilistic methods.

These languages can be separated into four di↵erent groups [113], extensions of RDF,

extensions of OWL, extensions of Description Logics (DL), and extensions of Logic Pro-

gramming formalisms.

The first group is basically represented by Fukushige [46], who proposes a vocabulary for

representing elements of a Bayesian Network (BN) in RDF and link them to regular RDF

triples, and by Udrea et. al. [129], who propose pRDF, a formal probabilistic extension of

RDF, which can be considered a probabilistic logic on its own [113].

Examples of languages in the second group are PR-OWL [27], described in Section 3.2,

39

as well as OntoBayes [136], a language capable of representing random variables and their

probabilistic dependencies through conditional probability distributions. Also in the same

group, there is the work of Holi and Hyvönnen [63], who propose a framework for represent-

ing uncertainty on taxonomies using BNs, and BayesOWL [37], a more expressive version

of [63] for representing uncertainty about class memberships within OWL ontologies.

In the third group, two main approaches have been proposed for extending Descrip-

tion Logics (DLs) with probabilistic information. On the one hand, there is the work of

Lukasiewicz [85]2, who proposes probabilistic extensions of SHIF(D) and SHOIN(D), that

allow expressing both terminological probabilistic knowledge about concepts and roles as

well as assertional probabilistic knowledge about instances of concepts and roles based on

probability intervals. On the other hand, there is P-CLASSIC, proposed by Koller et. al.

[71], an approach that uses a complete specification of the probability distribution using

BNs where the nodes are associated to concept expressions in the CLASSIC DL.

Finally, in the fourth group, there is a group of languages that are of special interest

to the SW community [113], those that involve ideas about how to connect rule bases

with ontologies represented in OWL or related languages. These languages are basically

divided into two groups [113]: those that integrate OWL with Logic Programming by

allowing to specify both a logic program and a description logic knowledge base and allowing

them to interact; and those based on Description Logic Programs (DLP) [52] and on a

translation from OWL to Logic Programming formalisms that have been extended to deal

with uncertainty. Examples of the first include Lukasiewicz [84] and Cali et. al. [15],

while the second include the work of Predoiu [111], Predoiu and Stuckenschmidt [112], and

Nottelman and Fuhr [100].

2This paper is an revised and extended version of [49].

40

Chapter 4: A Formal Definition for Probabilistic Ontology -

PR-OWL 2

In this Chapter I will start by justifying why it is important to have a formal mapping

between random variables defined in PR-OWL and the properties defined in OWL. The

key to building the bridge that connects the deterministic ontology defined in OWL and

its probabilistic extension defined in PR-OWL is to understand how to translate one to the

other. On the one hand, given a concept defined in OWL, how should its uncertainty be

defined in PR-OWL in a way that maintains its semantics defined in OWL? On the other

hand, given a random variable defined in PR-OWL, how should it be represented in OWL

in a way that respects its uncertainty already defined in PR-OWL?

In Section 4.1 I describe the need for a formal mapping between random variables de-

fined in PR-OWL and properties defined in OWL, and I propose an approach to such a

mapping. Moreover, I explain why PR-OWL 1 does not support such a mapping. Then, in

Section 4.2 I present an approach to overcome the limitations in PR-OWL 1 by introducing

new relationships created in PR-OWL 2. Furthermore, I present a schematic for the map-

ping back and forth from properties into random variables. Finally, in Section 4.3 I discuss

the importance of reusing all the concepts already defined in OWL when defining a new

probabilistic web ontology language (PR-OWL 2), especially data types.

Once the main ideas for mapping OWL properties to PR-OWL random variables and

for using existing OWL data types in PR-OWL are presented, the main changes and char-

acteristics of PR-OWL 2 can be presented. In Section 4.4 I show how to define a random

variable in PR-OWL 2. In Section 4.5 I describe how a PR-OWL 2 reasoner must deal with

entity hierarchy and polymorphism. In Section 4.6 I describe how to use the built-in RV

isA(resource, class) in order to define type uncertainty in PR-OWL 2. In Section 4.7

I then describe the major changes in defining nodes in PR-OWL 2, which involves defining

41

a MEBN expression, a new concept in the language. Finally, in Section 4.8 I describe what

kind of reasoning the community should expect from probabilistic ontology languages and

how PR-OWL 2 is able to support them.

4.1 Why map PR-OWL Random Variables to OWL Proper-

ties?

As a running example, we consider an OWL ontology for the public procurement domain.

The ontology defines concepts such as procurement, winner of a procurement, members of

a committee responsible for a procurement, etc. Figure 4.1 presents an OWL ontology with

a few of the concepts that would be present in this domain. In the figure we can see that

a front man is defined as a person who is a front for some organization (as shown in the

equivalent class expression Person and isFrontFor some Organization for the FrontMan

class in Figure 4.1).

Figure 4.1: OWL ontology for the public procurement domain.

42

Although there is great interest in finding people acting as fronts, it is in general unknown

whether a given person meets this definition. This is a typical case where we would benefit

from reasoning with uncertainty. For example, if an enterprise wins a procurement for

millions of dollars, but the responsible person for this enterprise makes less than 5 thousand

dollars a year or if that person has only middle school education, then it is likely that this

responsible person is a front for that enterprise. That is, we can identify potential fronts by

examining the value of the procurement, the income of the responsible person, and his/her

education level. Although we are not certain that this person is in fact a FrontMan, we

would like to at least use the available information to draw an inference that the person

is likely to be a front. This strategy is preferable to ignoring the evidence supporting this

hypothesis and saying that we simply do not know whether this person is a front or not.

It is also preferable to creating an arbitrary rule declaring that certain combinations of

education level and income imply with certainty that a person is a FrontMan.

Figure 4.2: Front of an Enterprise MFrag.

This uncertain relationship is presented in Figure 4.2 as a MEBN Fragment, where we

43

see that the education level and annual income of a responsible person and the value of a

procurement influence whether the person is front for the procurement. However, in order

for the probabilistic relations described to hold, some conditions have to be satisfied, namely

that the person we are considering as a possible front must be responsible for the enterprise

we are examining, which is the winner of the procurement that is already finished. In other

words, if the person is not responsible for the enterprise, there is no reason for this person to

be considered a front for this enterprise. The same principle holds if the enterprise did not

win that procurement, i.e., the value of a procurement that was not won by that enterprise

will not a↵ect the likelihood of having a front for that enterprise. These conditions that

must be satisfied for the probabilistic relationship to hold are depicted inside the green

pentagonal shapes in the figure.

Ideally, it should be possible to use PR-OWL to reason probabilistically about uncertain

aspects of an ontology based on the information already available, i.e., based on existing

RDF triples and knowledge that can be inferred with OWL reasoning. For instance, Fig-

ure 4.3 presents some information we could have available in an OWL ontology for the

procurement domain, and uses that to generate a BN in order to draw inferences about

it. So, even though we cannot say that John Doe is a FrontMan, based on his low annual

income, his low education level, and the high value of the procurement his enterprise won,

we can infer that he has a high chance of being a front for that enterprise. In order to do

that, we need to relate the knowledge expressed in the OWL ontology to PR-OWL random

variables.

The problem with PR-OWL 1 is that it has no mapping between the random variables

used in PR-OWL and the properties used in OWL. In other words, there is nothing in

the language that tells us that the RV hasEducationLevel(person) defines the uncer-

tainty of the OWL property hasEducationLevel. So, even if we have information about

the education level of a specific person, for instance, if we have the triple John Doe hasE-

ducationLevel middleSchool, we would not be able to instantiate the random variable

hasEducationLevel(person) for John Doe. Although the OWL property hasEducation

44

Figure 4.3: Using OWL triples for probabilistic reasoning.

and the RV hasEducationLevel(person) have similar syntax, there is no formal represen-

tation of this link (as depicted in Figure 4.4). In other words, we cannot use the information

available in an OWL ontology (the triples with information about individuals) to perform

probabilistic reasoning. Full compatibility between PR-OWL and OWL requires this ability.

Figure 4.4: Unknown mapping between PR-OWL 1 RVs and OWL properties.

In fact, Poole et al. [110] states that it is not clear how to match the formalization

of random variables from probabilistic theories with the concepts of individuals, classes

and properties from current ontological languages like OWL. However, Poole et al. [110]

says that “We can reconcile these views by having properties of individuals correspond to

random variables.” This is exactly the approach used in this work to integrate MEBN logic

and the OWL language.

45

4.2 The bridge joining OWL and PR-OWL

The key to building the bridge that connects the deterministic ontology defined in OWL

and its probabilistic extension defined in PR-OWL is to understand how to translate one to

the other. On the one hand, given a concept defined in OWL, how should its uncertainty be

defined in PR-OWL in a way that maintains its semantics defined in OWL? On the other

hand, given a random variable defined in PR-OWL, how should it be represented in OWL

in a way that respects its uncertainty already defined in PR-OWL?

Figure 4.5: PR-OWL 1 lack of mapping from RVs to OWL properties.

Imagine we are trying to define the RV hasEducationLevel RV1, which represents the

MEBN RV hasEducationLevel(person) used in Figure 4.2. Let’s also assume that we have

an OWL property called hasEducationLevel, which is a functional property with domain

Person and range EducationLevel, and an OWL property called aspiresEducationLevel,

which is also a functional property with domain Person and range EducationLevel. As
1This is the OWL syntax for this RV. In MEBN we represent a RV by its name followed by the arguments

in parentheses. In OWL the arguments are defined by the property hasArgument.

46

shown in Figure 4.5, in PR-OWL 1 it is not possible to distinguish whether the hasEdu-

cationLevel RV is defining the uncertainty of the OWL property hasEducationLevel or

aspiresEducationLevel. To clarify this problem, imagine that John Doe has only middle

school (John Doe hasEducationLevel middleSchool), but he aspires to have a graduate

degree (John Doe aspiresEducationLevel graduate). If we do not explicitly say which

OWL property should be used to instantiate the hasEducationLevel RV, we might end up

saying that hasEducationLevel(John Doe) = graduate, instead of saying that hasEdu-

cationLevel(John Doe) = middleSchool, which is the intended semantics.

Figure 4.6: PR-OWL 1.0 lack of mapping from arguments to OWL properties.

A simple solution is to add a relation between a PR-OWL RV and the OWL property

that this RV defines the uncertainty of, as suggested by Poole et al. [110]. In PR-OWL 2

this relation is called definesUncertaintyOf. However, it is not enough to have a complete

mapping between RVs and OWL properties. Another problem appears when we try to define

n-ary RVs. This mapping is not as straightforward as the previous one because OWL only

supports binary properties (for details on suggested work arounds to define n-ary relations

in OWL see [59]).

Imagine we now want to represent not only the education level a person has, but also

47

Figure 4.7: The bridge joining OWL and PR-OWL.

who was the advisor when this person attained that education level. So now, besides hav-

ing the property hasEducationLevel, we also have the property hasEducationLevelAd-

visor, which has Person as both domain and range. Thus, our RV now is hasEducation-

Level(person,advisor). With this new scenario, we can see that a similar problem occurs

with the mapping of arguments. As it can be seen in Figure 4.6, there is nothing in PR-

OWL 1 that tells which argument is associated with which property. To clarify the problem,

imagine that Richard Roe has graduate education level (Richard Roe hasEducationLevel

graduate) and that his advisor was J. Pearl (Richard Roe hasEducationLevelAdvisor

J Pearl). When instatiating the hasEducationLevel(person,advisor) RV, machines

48

would not know who is the student and who is the advisor. Although this mapping is obvi-

ous for a human being, without an explicit mapping of the arguments, machines could end

up using Richard Doe as the advisor and J. Pearl as the student (hasEducationLevel(J -

Pearl,Richard Roe)), instead of using J. Pearl as the advisor and Richard Doe as the

student (hasEducationLevel(Richard Roe,J Pearl)).

As expected, to a similar problem we apply a similar solution. In PR-OWL 2 we have a

relation between an argument to a RV and the OWL property it refers to. However, unlike

the RV mapping, the argument mapping refers to either the domain or the range of a prop-

erty, not to the property itself. For instance, in the hasEducationLevel(person,advisor)

RV, the person argument refers to the domain of the OWL property hasEducationLevel,

which is a Person. The advisor argument, on the other hand, refers to the range of the

OWL property hasEducationLevelAdvisor, which is also a Person, but a di↵erent one

(a person cannot be his/her own advisor). Therefore, in order to di↵erentiate when the

argument refers to the domain or to the range of a property, we add to PR-OWL 2 the

relations isSubjectIn and isObjectIn.

More examples of random variables in this new format can be found in [21]. Here, a

schematic is given in Figure 4.7 for the 2-way mapping between triples and random variables.

Functions and predicates are considered as separate cases.

If a property (hasB or dOf) is defined in OWL, then its domain and range are already

represented (A and B; C and D, respectively). The first thing to be done is to create the

corresponding RV in PR-OWL (hasB RV and dOf RV, respectively) and link it to this OWL

property through the property definesUncertaintyOf.

For binary relations, the domain of the property (A and C, respectively) will usually

be the type (isSubsBy) of the variable (MFrag.a and MFrag.c, respectively) used in the

first argument (hasB RV 1 and dOf RV 1, respectively) of the RV. For n-ary relations see

example given earlier in this Section on the RV hasEducationalLevel(person,advisor)

and also [21].

If the property is non-functional (hasB), then it represents a predicate that may be true

49

or false. Thus, instead of having the possible values of the RV in PR-OWL (hasB RV) being

the range of the OWL property (B), it must be Boolean. So, its range (B) has to be mapped

to the second argument (hasB RV 2) of the RV, the same way the domain (A) was mapped

to the first argument (hasB RV 1) of the RV. On the other hand, if the the property is

functional (dOf), the possible values of its RV (dOf RV) must be the same as its range (D).

Figure 4.8: Example of binary RVs mapping to OWL properties for both predicate and
function.

It is important to note that not only is the RV linked to the OWL property by define-

sUncertaintyOf, but also its arguments are linked to their respective OWL properties by

either isSubjectIn or isObjectIn, depending on what they refer to (domain or range of

the OWL property, respectively). This feature is especially important when dealing with

n-ary relations, where each variable will be associated with a di↵erent OWL property (see

50

explanation of Figure 4.6 earlier in this Section for details).

Finally, if the RV is already defined in PR-OWL with all its arguments and its possible

values, the only thing that needs to be done is to create the corresponding OWL property,

link the RV to it using definesUncertaintyOf, create the OWL properties for the argu-

ments, if necessary, link them using either isSubjectIn or isObjectIn, depending on what

they refer to (domain or range of the OWL property, respectively), and make sure that the

domain and range of the property matches the RV definition, as explained previously.

Figure 4.8 presents examples of instantiations of the schematic just presented. In it

we have the mapping of the RV isFrontFor(person,enterprise) to the OWL property

isFront, which is a predicate, and the mapping of the RV hasEducationLevel(person)

to the OWL property hasEducationLevel, which is a function.

The mapping described in this Section provides the basis for a formal definition of

consistency between a PR-OWL probabilistic ontology and an OWL ontology, in which rules

in the OWL ontology correspond to probability one assertions in the PR-OWL ontology. A

formal notion of consistency can lead to development of consistency checking algorithms.

4.3 Extending PR-OWL to Use OWL’s Types

One of the main concerns when developing OWL [66] was to keep the same semantics of

its predecessors, RDF and XML, which meant reusing all the concepts already defined in

those languages, including primitive types, such as string, Boolean, decimal, etc. However,

PR-OWL 1 does not make use of the primitive types used in OWL. For instance, PR-OWL

1 defines Boolean as an individual of the class MetaEntity, as shown in Figure 4.9, but does

not keep any relation to the Boolean type used in OWL.

51

Figure 4.9: Boolean individual defined in PR-OWL.

If we wanted to define a continuous random variable for the annual income of a person in

PR-OWL, we would need to define the real numbers, even though they are already defined

in OWL. Moreover, concepts that use this primitive type in OWL would not be understood

in PR-OWL, in other words, they lack compatibility as far as primitive types are concerned.

Figure 4.10 shows the di↵erent types of entities defined in PR-OWL. A possible approach

to keep OWL’s semantics is to avoid defining new types of entities and use what is already

available in OWL. For instance, the class ObjectEntity can be substituted by the OWL

class Thing : after all, according to [27] ObjectEntity aggregates the MEBN entities that are

real world concepts of interest in a domain. They are akin to objects in Object-Oriented

(OO) models and to frames in frame-based knowledge systems. In other words, they can be

replaced by OWL classes, although these classes will have to respect additional semantics

from PR-OWL.

52

Figure 4.10: The di↵erent types of entities defined in PR-OWL.

According to [27] CategoricalRVState is used to represent a list of mutually exclusive,

collectively exhaustive states, which in turn are possible states of random variables, repre-

sented by nodes in PR-OWL. Therefore, it can be replaced by DataOneOf if it needs to

enumerate data types or ObjectOneOf if it needs to enumerate objects. These concepts

allow the enumeration of literals and individuals, respectively (see [97] for more details).

BooleanRVState can be replaced by the Boolean data type present in OWL. Finally,

the MetaEntity class, which includes all the entities that convey specific definitions about

entities (e.g. typelabels that name the possible types of entities), can be eliminated since

all other entities were replaced by a concept already present in OWL.

4.4 Defining a Random Variable in PR-OWL 2

Now that the main ideas for mapping OWL properties to PR-OWL random variables and

for using existing OWL data types in PR-OWL have been presented, it can be shown how

to define a random variable in PR-OWL 2.

The first change to notice, is that in PR-OWL 2 there is a separate class to define

random variables, and nodes make reference to this class. In PR-OWL 1, there is no

separate random class. A random variable is identified with the resident node in its home

MFrag, and input and context nodes make reference to the resident node itself.

53

Besides the clear di↵erence in semantics, i.e., a resident node is not the same thing as

a random variable, there are other advantages in making such distinction.

First, by having input and context nodes point to the random variable instead of pointing

to a specific resident node, it is possible to decide dynamically which distribution to use.

This is a form of polymorphism that can be very useful to the modeler. For instance, it is

possible to define a distribution for the random variable RV.hasHeight given the domain

is a Person and another distribution given the domain is a VolleyballPlayer (subclass of

Person). So, at runtime, if someone is known only to be a person, then the first distribution

will be used, however, if it is known that this person is in fact a volleyball player, then the

second and more specific distribution will be used. In PR-OWL 1, since the input and

context nodes were linked directly to a resident node, the user would be forced to choose

one of the two distributions before runtime, during modeling. This was clearly not flexible

enough to support polymorphism.

Second, in MEBN, when at least one of the context nodes is not valid, the distribution

defined for its resident nodes are not correct and a default distribution should be used

instead. This default distribution should be independent of the MFrag. In other words, there

should be a unique default distribution for a random variable, independent of context. In

PR-OWL 1, every resident node had its own default distribution. This could eventually lead

to inconsistencies. Imagine there are two di↵erent distributions for the same random variable

and that each one has a di↵erent default distribution. Now, imagine that in runtime none

of these MFrags could be instantiated (invalid context nodes). Which default distribution

should be used? It is clear that there is no right answer, which could lead to di↵erent

answers depending on the choice. This problem does not happen in PR-OWL 2, since the

default distribution is defined only once for the random variable itself, and is independent

of context (it applies in any situation).

Third, in PR-OWL 2 the mapping between a PR-OWL random variable and an OWL

property is defined only once. In PR-OWL 1, the mapping would have to be defined for every

resident node that maps to that OWL property. Besides being repetitive and unnecessary,

54

it is easy to see that this could eventually lead to mapping inconsistencies.

Figure 4.11: The OWL restrictions of the RandomVariable class.

In PR-OWL 2 a random variable defines the uncertainty of the outcome related to a

specific property, which has its semantics defined in OWL. There are four main concepts that

need to be defined for every random variable (see Figure 4.11)2: a link to the OWL property

it defines the uncertainty of (represented by the property prowl2:definesUncertaintyOf);

the domain of the random variable defined by its arguments (represented by the property

prowl2:hasArgument); the range or possible outcomes of the random variable (represented

by the property prowl2:hasPossibleValues); and finally, its distribution (represented

by the property prowl2:hasProbabilityDistribution). Each of these concepts will be

discussed in more detail in the following subsections before presenting examples of random

variables.

In MEBN, every random variable has absurd as one of its possible values. Therefore, in

PR-OWL this is also the case.
2This graph was generated using the OntoGraf plugin for Protégé, which comes with the default distri-

bution of Protégé 4. The homepage of the OntoGraf project is http://protegewiki.stanford.edu/wiki/
OntoGraf.

55

http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoGraf

4.4.1 Mutually Exclusive and Collectively Exhaustive Outcomes

A random variable is a function that maps elements of a sample space to elements of an

outcome set. The sample space represents all possible outcomes of an event or experiment.

The actual outcome is unknown before the event happens. Likelihoods of the di↵erent

possible outcomes are represented by a probability distribution. In statistics, the outcome

set is usually taken to be the real numbers. This real number can represent categorical

values (e.g., low, medium, high), Boolean values (true and false), or some other set of

mutually exclusive and collectively exhaustive outcomes. In the Artificial Intelligence (AI)

literature, random variables are typically allowed to range over values in an arbitrary set.

This convention makes it much more straightforward to represent semantics.

As explained before, in PR-OWL 2, the possible values or outcomes of a random vari-

able are instances of classes and data types. When specifying that a random variable will

have individuals of a class as its possible outcomes, it is reasonable to assume that all

known individuals of that class form a set of collectively exhaustive outcomes. However,

the assumptions about individuals in OWL are not enough to guarantee these individuals

are mutually exclusive. More specifically, although OWL provides a way to express unique

names, it also allows two di↵erent names to point to the same object in the real world.

For instance, assume the random variable hasMother(person) has the individuals of class

Person as its possible outcomes. Suppose amongst the individuals of class Person, we have

Rebecca and Becky, but we happen to know that Rebecca is the same individual as Becky

(supported by the OWL property sameAs). Therefore, if we simply list all known instances

of Person as possible values of hasMother(person), we would have at least two states

meaning the same thing, i.e., the outcomes would not be mutually exclusive.

To overcome this shortcoming, PR-OWL 2 follows the MEBN and PR-OWL 1 conven-

tion, and assumes that every individual has a unique ID associated to it. For instance,

both Rebecca and Becky from our previous example would have the same unique ID (e.g.,

‘‘Rebecca’’). This is represented by the data property hasUID, which has Thing as its

domain and string as its range. This is actually the same solution applied in PR-OWL 1,

56

however, in PR-OWL 1 the domain of this property was Entity, since PR-OWL 1 had a

special set of classes to represent entities and types.

The uniqueness of the ID is guaranteed by the OWL restriction on the hasUID property

that says it is a functional property. The only rules that have to be guaranteed by the

PR-OWL reasoner are:

1. All individuals that are the same (related by the sameAs property), must have the

same unique ID (same string for the property hasUID);

2. All individuals that are not the same must have di↵erent unique IDs.

This is not the only problem of having di↵erent individuals meaning the same thing. Sup-

pose we have a finding saying that hasMother(Josh) = Rebecca, and that Josh sameAs

Joshua (i.e., they have the same unique ID). If we ask the PR-OWL reasoner who is the

mother of Joshua by replacing the argument person from the hasMother(person) with

Joshua, the PR-OWL reasoner might not be able to understand that hasMother(Joshua)

= Rebecca, as expected. To avoid such problem, the unique ID should be used not only for

possible outcomes, but also for arguments of random variables. This way we would have a

unique representation for the finding and no matter what individual we use in our query, as

long as the reasoner uses its unique ID, the answer would always be the same and correct.

In fact, this is required by MEBN for defining RVs. In order to define RVs with arguments

that are not UIDs, MEBN uses built-in MFrags. In other words, non UIDs can be used as

arguments (e.g., individuals), as long as the PR-OWL 2 reasoner replaces them with their

UID to avoid the problem described.

4.4.2 Avoiding OWL Full

The careful reader might have noticed that although we have directly mapped random vari-

ables to properties in Figure 4.7, in Figure 4.11 this mapping is slightly di↵erent. In order

to properly say that a random variable defines the uncertainty of some property, we would

have to define the class RandomVariable having the restriction definesUncertaintyOf

57

some rdf:Property. However, using such a restriction would require OWL Full, since ac-

cording to [53], “IRIs from the reserved vocabulary other than owl:Thing and owl:Nothing

must not be used to identify classes in an OWL 2 DL ontology.” In order to keep PR-OWL

2 as an OWL 2 DL ontology, we avoided this restriction and replaced it by definesUncer-

taintyOf some xsd:anyURI. Otherwise, we would not be able to take advantage of the

reasoners available for OWL, since they are usually not capable of reasoning with OWL

Full ontologies.

Note that there are semantics that OWL-DL reasoners cannot capture, but PR-OWL

reasoners are expected to respect. In other words, even though the property definesUncer-

taintyOf accepts any URI, the PR-OWL reasoner has to make sure the URI is in fact a

property. That is, PR-OWL 2 is a proper extension of OWL-DL, having semantic restric-

tions beyond those represented in the OWL ontology. PR-OWL reasoners must respect the

extended semantics.

This solution of using URIs is used more than once in PR-OWL 2 as a means to capture

extended semantics while still allowing the use of OWL-DL reasoners to reason about aspects

of PR-OWL ontologies that OWL-DL can represent. Another example is the property

hasPossibleValues, which is used to define the possible values of a random variable.

Although it accepts any URI (by the restriction hasPossibleValues only anyURI), the

semantics of PR-OWL defines that the only possible URIs are those that point to a class

or a data type. This property only defines the type of the possible values, however, the

possible values will be the UIDs of the individuals of the allowed type (individuals that

represent the same object will only be represented once by their UID).

4.4.3 Built-in Random Variables

Figure 4.12 presents not only the hierarchy but also the built-in random variables de-

fined in PR-OWL 2. Although it is not explicitly shown, there is a “soft” link between

RandomVariable and Absurd, represented by the restriction hasPossibleValues value

58

‘‘http://www.pr-owl.org/pr-owl2.owl]Absurd’’^^anyURI (see Figure 4.11).3

Figure 4.12: Graph with the main concepts for defining random variables.

A BooleanRandomVariable is a special kind of RandomVariable, which represents

random variables that can only have Boolean values as their possible values or range,

guaranteed by the restriction hasPossibleValues value ‘‘http://www.w3.org/2001/-

XMLSchema]boolean’’^^anyURI (see Figure 4.13).

Figure 4.13: The OWL restrictions of the BooleanRandomVariable class.

3We call this link “soft” because we are using the data type URI to make reference to the Absurd class.
Usually the link would be made to the class Absurd directly, through the use of an object property, i.e., the
range of the property would be a class and not the data type URI. As explained before, this was done in
order to allow the use of OWL DL reasoners. The link is not shown in Figure 4.12 exactly because this link
is associated to the URI (not shown in the Figure), and not with the class Absurd itself, which is shown in
the Figure.

59

A LogicalOperator is a special kind of BooleanRandomVariable, which represents

first-order logic (FOL) operators. These logic operator random variables are mostly used

to express FOL formulas using MEBN expressions (see Subsection 4.7.3 for details on how

to define FOL formulas). Figure 4.14 presents the OWL restrictions for this class.

Since these operators can represent more expressive formulas than those represented in

OWL DL, there is no explicit mapping of these RVs to OWL properties. This is a special

case for these built-in random variables. Nevertheless, they can be mapped (in a future

version) to an OWL ontology that defines FOL logic operators.

Figure 4.14: The OWL restrictions of the classes LogicalOperator and Quantifier.

The built-in logical operators available in PR-OWL 2 are the same and also represented

as instances as in PR-OWL 1. Namely they are:

and represents the FOL ’and’ operator and must have two arguments;

or represents the FOL ’or’ operator and must have two arguments;

60

not represents the FOL ’not’ operator and must have one argument;

equalTo represents the FOL ’=’ operator and must have two arguments;

implies represents the FOL ’)’ operator, which is an ’if then’ statement, and must have

two arguments;

iff represents the FOL ’,’ operator, which is an ’if and only if’ statement, and must have

two arguments.

A Quantifier is a special kind of BooleanRandomVarible, which represents first-order

(FOL) quantifiers. These quantifier RVs are mostly used to express FOL formulas using

MEBN expressions (see Subsection 4.7.3 for details on how to define FOL formulas). Fig-

ure 4.14 presents the OWL restrictions for this class.

Since these quantifiers can represent more expressive formulas than those represented in

OWL DL, there is no explicit mapping of these RVs to OWL properties. This is a special

case for these built-in random variables. Nevertheless, they can be mapped (in a future

version) to an OWL ontology that defines FOL quantifiers.

The built-in quantifiers available in PR-OWL 2 are the same and also represented as

instances as in PR-OWL 1. Namely they are:

exists represents the FOL ’9’ quantifier and must have two arguments (one exemplar and

one formula which it is quantifying over). If more than one variable needs to be

quantified over, i.e., if you need more than one exemplar on the same formula, it is

necessary to nest this quantifier with another quantifier over the other bound variable.

This restriction is to be consistent with the MEBN specification presented in [78];

forAll represents the FOL ’8’ quantifier and must have two arguments (one exemplar and

one formula which it is quantifying over). If more than one variable needs to be

quantified over, i.e., if you need more than one exemplar on the same formula, it is

necessary to nest this quantifier with another quantifier over the other bound variable.

This restriction is to be consistent with the MEBN specification presented in [78].

61

4.4.4 Defining Arguments for Random Variables

Besides mapping a random variable to an OWL property and defining its possible values, a

random variable needs to define the arguments it has, which basically represent the domain

of the RV.

Figure 4.15: The OWL restrictions of the MappingArgument class.

62

MappingArgument is used to map random variable arguments to OWL properties domain

or range. On the one hand, to map a random variable argument to a domain of some OWL

property, it is necessary to say that this argument isSubjectIn some OWL property. On

the other hand, to map a random variable argument to a range of some OWL property, it

is necessary to say that this argument isObjectIn some OWL property. In both cases, the

type of the argument has to be consistent with the OWL property it points to. If isSub-

jectIn is used, then the type of the argument (defined by the property isSubstitutedBy)

has to be the same as the domain of the property it points to. However, if isObjectIn is

used instead, then the type of the argument (defined by the property isSubstitutedBy)

has to be the same as the range of the property it points to.

Since OWL DL does not allow the use of restricted vocabulary when defining the on-

tology, instead of saying that isSubjectIn only rdf:Property and isObjectIn only

rdf:Property, the restrictions are defined as isSubjectIn only rdfs:anyURI and isOb-

jectIn only rdfs:anyURI (see Section 4.4.2 for more information). Nevertheless, the

semantics of PR-OWL enforce that these URIs have to point to RDF properties. The same

reasoning applies to the restriction isSubstitutedBy only/some rdfs:anyURI. The se-

mantics of PR-OWL enforce that these URIs have to point to either classes or data types.

Figure 4.15 presents the OWL restrictions for this class.

4.4.5 Defining Distributions for Random Variables

Finally, once the random variable, its arguments, possible values, and respective mappings

have been defined, it is necessary to define its default probability distributions. The distri-

bution defined here will be used if there is no other option, i.e., if there is no MFrag with a

resident node pointing to this random variable or if there is but none has its context nodes

satisfied.

The ProbabilityDistribution class is used to define the local distributions for each

resident node (these local distributions apply only if all context nodes in the MFrag are

satisfied), and the default distribution for a random variable (to be used if none of the

63

local distributions in any of its home MFrags applies). A probability distribution can be

described using an application dependent declarative format, such as a UnBBayes local

probability distribution (LPD), or via a PR-OWL table (which has probability assignments

as its cells). Figure 4.16 presents the OWL restrictions for this class.

Figure 4.16: The OWL restrictions of the ProbabilityDistribution class.

Figure 4.17 presents the main concepts and their relations for defining proba-

bility distributions. It can be seen that both ResidentNode and RandomVariable

have probability distributions. There are two types of probability distributions, PR-

OWLTable and DeclarativeDistribution. A PR-OWLTable has probability assign-

ments (ProbabilityAssignment), which depend on conditioning states from the parents

(ConditioningState). A DeclarativeDistribution is defined by some script, which fol-

lows some application-specific grammar.

For detailed information on how to define probability distributions, see Appendix A

Section A.2.

64

Figure 4.17: Graph with the main concepts and their relations for defining probabilistic

distributions.

4.4.6 Examples of Random Variables

In the following subsections we will present di↵erent examples of random variables. First

we present the Boolean random variable isRelated(person1,person2), which represents

whether two people are related. Then we present an example of an object random variable,

livesAt(person), which represents where a given person lives. Finally we present an

example of a data random variable, hasAnnualIncome(person), which represents how much

a person makes a year.

It is worth noting that until PR-OWL 2 it was not possible to define random variables

with data types as their possible values (except the built-in Boolean data type defined in

PR-OWL 1). This type of construction is one of the contributions of this work, due to the

use of existing types supported by OWL (e.g., float, date, time, int, etc).

65

Boolean Random Variable

Imagine we want to represent uncertainty about whether two people are related. Suppose

that there is already an OWL property that has that semantics (Person isRelated Per-

son). Now, in order to define uncertainty about this property we need to create a random

variable and map it to this OWL property. Since this property is a predicate we need

to create a Boolean random variable (RV.isRelated), which defines the uncertainty of the

OWL property isRelated. Listing 4.1 presents this random variable. It has two arguments,

RV.isRelated.MA.person1 and RV.isRelated.MA.person2, its probability distribution is

represented by ex:RV.isRelated.PT.dist1, and its range is Boolean (inherited from its

type BooleanRandomVariable).

Listing 4.1: Definition of the Boolean random variable isRelated(person1,person2)

1 I nd i v i d u a l : RV. i sRe l a t ed
2 Types:
3 pr�owl2:BooleanRandomVariable
4 Fac t s :
5 pr�owl2:hasArgument RV. i sRe l a t ed .MA. person1 ,
6 pr�owl2:hasArgument RV. i sRe l a t ed .MA. person2 ,
7 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. i sRe l a t ed .PT. d i s t1 ,
8 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; i sRe l a t ed ”ˆˆxsd:anyURI

Until now we have just given names but no semantics to the arguments and probability

distribution of this random variable.

Listing 4.2 presents the semantics for the two arguments. Argument

RV.isRelated.MA.person1 is the first argument of the random variable RV.isRelated

and it can be substituted by the class Person. This argument is the subject in the OWL

property isRelated. Argument RV.isRelated.MA.person2 is the second argument of

the random variable RV.isRelated and it can be substituted by the class Person. This

argument is the object in the OWL property isRelated.

66

Listing 4.2: Arguments of the Boolean random variable isRelated(person1,person2)

1 I nd i v i d u a l : RV. i sRe l a t ed .MA. person1
2 Types:
3 pr�owl2:MappingArgument
4 Fac t s :
5 pr�owl2: isArgumentOf RV. i sRe la ted ,
6 pr�owl2:hasArgumentNumber 1 ,
7 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI ,
8 pr�ow l 2 : i s Sub j e c t I n ”&ex ; i sRe l a t ed ”ˆˆxsd:anyURI
9

10 I nd i v i d u a l : RV. i sRe l a t ed .MA. person2
11 Types:
12 pr�owl2:MappingArgument
13 Fac t s :
14 pr�owl2:hasArgumentNumber 2 ,
15 pr�owl2: isArgumentOf RV. i sRe la ted ,
16 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI ,
17 pr�ow l2 : i sOb j e c t In ”&ex ; i sRe l a t ed ”ˆˆxsd:anyURI

Table 4.1: Table representing the distribution for the random variable isRelated(person1,
person2).

State Probability

True 0.001

False 0.999

Absurd 0.0

Table 4.14 presents the probability distribution for the random variable RV.isRelated.

Listing 4.3 presents how the distribution depicted in Table 4.1 is represented as a

PR-OWL table. As seen in Table 4.1, since the random variable has 3 states

and no parents, the number of probability assignments is 3. The assignment

RV.isRelated.PT.dist1.PA.assign1 assigns probability .001 to the state true. The as-

signment RV.isRelated.PT.dist1.PA.assign2 assigns probability .999 to the state false.
4This table follows UnBBayes default way of representing probability distributions, where the states of

the child are represented in each row and the combination of parent states are represented on the header of
the table. In UnBBayes the rows have to sum to 1.

67

Finally, the assignment RV.isRelated.PT.dist1.PA.assign3 assigns probability 0 to the

state absurd.

Listing 4.3: PR-OWL table for the random variable isRelated(person1,person2)

1 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1
2 Types:
3 pr�owl2:PR�OWLTable
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. i sRe la ted ,
6 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. ass ign1 ,
7 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. ass ign2 ,
8 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn3
9

10 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn1
11 Types:
12 pr�owl2 :Probab i l i tyAss ignment
13 Fac t s :
14 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
15 pr�owl2:hasStateName ” true ”ˆˆ x sd : s t r i n g ,
16 pr�ow l2 :ha sS ta t eProbab i l i t y .001 f
17
18 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn2
19 Types:
20 pr�owl2 :Probab i l i tyAss ignment
21 Fac t s :
22 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
23 pr�owl2:hasStateName ” f a l s e ”ˆˆ x sd : s t r i n g ,
24 pr�ow l2 :ha sS ta t eProbab i l i t y .999 f
25
26 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn3
27 Types:
28 pr�owl2 :Probab i l i tyAss ignment
29 Fac t s :
30 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
31 pr�owl2:hasStateName ”absurd”ˆˆ x sd : s t r i n g ,
32 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f

Object Random Variable

Imagine we want to define the uncertainty that a person lives at some address. Suppose

that there is already an OWL property that has that semantics (Person livesAt Address).

Now, in order to define uncertainty about this property we need to create a random variable

and map it to this OWL property. Since this property is a function (a person only lives

at one address) we need to create a random variable (RV.livesAt), which defines the

68

uncertainty of the OWL property livesAt. Listing 4.4 presents this random variable. It

has one argument, RV.livesAt.MA.person, its probability distribution is represented by

ex:RV.livesAt.DD.dist1, and its range is Address.

Listing 4.4: Definition of the object random variable livesAt(person)

1 I nd i v i d u a l : RV. l i v e sAt
2 Types:
3 pr�owl2:RandomVariable
4 Fac t s :
5 pr�owl2 :hasPos s ib l eVa lue s ”&ex ; Address ”ˆˆxsd:anyURI ,
6 pr�owl2:hasArgument RV. l i v e sAt .MA. person ,
7 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. l i v e sAt .DD. d i s t1 ,
8 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; l i v e sAt ”ˆˆxsd:anyURI

Until now we have just given names but no semantics to the argument and probability

distribution of this random variable.

Listing 4.5: Argument of the object random variable livesAt(person)

1 I nd i v i d u a l : RV. l i v e sAt .MA. person
2 Types:
3 pr�owl2:MappingArgument
4 Fac t s :
5 pr�owl2: isArgumentOf RV. l ive sAt ,
6 pr�owl2:hasArgumentNumber 1 ,
7 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI ,
8 pr�ow l 2 : i s Sub j e c t I n ”&ex ; l i v e sAt ”ˆˆxsd:anyURI

Listing 4.5 presents the semantics for the argument. Argument RV.livesAt.MA.person

is the first and only argument of the random variable RV.livesAt and it can be substituted

by the class Person. This argument is the subject in the OWL property livesAt.

Listing 4.6: Declarative distribution for the random variable livesAt(person)

1 I nd i v i d u a l : RV. l i v e sAt .DD. d i s t 1
2 Types:
3 pr�ow l 2 :De c l a r a t i v eD i s t r i bu t i on
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. l ive sAt ,
6 pr�owl2 :hasDec l a ra t i on ” [Uniform () ;] ”ˆˆ x sd : s t r i n g ,
7 pr�owl2 : i sRepresentedAs ”UnBBayes”ˆˆ x s d : s t r i n g

69

Finally, Listing 4.6 presents a declarative distribution for the random variable li-

vesAt(person) represented by the application-dependent format for local probability dis-

tribution defined in UnBBayes. The distribution is uniform over the possible values of the

random variable (individuals of the class Address).

Data Random Variable

Imagine we want to define the uncertainty over how much a person makes per year. Suppose

that there is already an OWL property that has that semantics (Person hasAnnualIncome

float). For simplicity, let’s assume the amount of income a person makes per year is

represented as a float, instead of being another class which would have the float value

and the unit like Dollar (for information on how to represent values and their units see

discussion about quality and quantity in [93]). Now, in order to define uncertainty about

this property we need to create a random variable and map it to this OWL property. Since

this property is a function (a person only makes a certain amount of money per year) we

need to create a random variable (RV.hasAnnualIncome), which defines the uncertainty of

the OWL property hasAnnualIncome. Listing 4.7 presents this random variable. It has one

argument, RV.hasAnnualIncome.MA.person, its probability distribution is represented by

ex:RV.hasAnnualIncome.DD.dist1, and its range is float.

It is worth noting that in PR-OWL 1 such a random variable was not possible. This

type of construction is one of the contributions of this work, due to the use of existing types

supported by OWL.

Listing 4.7: Definition of the data random variable hasAnnualIncome(person)

1 I nd i v i d u a l : RV. hasAnnualIncome
2 Types:
3 pr�owl2:RandomVariable
4 Fac t s :
5 pr�owl2 :hasPos s ib l eVa lue s ”&xsd ; f l o a t ”ˆˆxsd:anyURI ,
6 pr�owl2:hasArgument RV. hasAnnualIncome .MA. person ,
7 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. hasAnnualIncome .DD. d i s t1 ,
8 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; hasAnnualIncome”ˆˆxsd:anyURI

70

Until now we have just given names but no semantics to the argument and probability

distribution of this random variable.

Listing 4.8 presents the semantics for the argument. Argument

RV.hasAnnualIncome.MA.person is the first and only argument of the random vari-

able RV.hasAnnualIncome and it can be substituted by the class Person. This argument

is the subject in the OWL property hasAnnualIncome.

Listing 4.8: Example of mapping argument
1 I nd i v i d u a l : RV. hasAnnualIncome .MA. person
2 Types:
3 pr�owl2:MappingArgument
4 Fac t s :
5 pr�owl2: isArgumentOf RV. hasAnnualIncome ,
6 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI ,
7 pr�ow l 2 : i s Sub j e c t I n ”&ex ; hasAnnualIncome”ˆˆxsd:anyURI ,
8 pr�owl2:hasArgumentNumber 1

Finally, Listing A.13 presents a declarative distribution for the random variable hasA-

nnualIncome(person) represented by the application-dependent format for local probabil-

ity distribution defined in UnBBayes. The distribution is normal with mean 50,000.00 and

standard deviation 20,000.00.

Listing 4.9: Declarative distribution for the random variable hasAnnualIncome(person)

1 I nd i v i d u a l : RV. hasAnnualIncome .DD. d i s t 1
2 Types:
3 pr�ow l 2 :De c l a r a t i v eD i s t r i bu t i on
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. hasAnnualIncome ,
6 pr�owl2 : i sRepresentedAs ”UnBBayes”ˆˆ x sd : s t r i n g ,
7 pr�owl2 :hasDec l a ra t i on ” [Normal (50000 ,20000) ;] ”ˆˆ x s d : s t r i n g

71

4.5 Entity Hierarchy and Polymorphism

One of the major changes in PR-OWL 2 was the removal of its own definition of entities.

With this design decision, all entities used within PR-OWL 2 follow the same semantics

defined in OWL. In other words, entities are defined as either classes or data types.

Moreover, since OWL supports multiple inheritance, so does PR-OWL 2. Thus, all the

control over the type definition and type hierarchy in PR-OWL is delegated to OWL.

Nevertheless, there are situations where the PR-OWL reasoner will have to use this

hierarchy information to decide which MFrag to instantiate. This is due to PR-OWL’s 2

ability to overload probability distributions for the same random variable.

For instance, it is possible to define a distribution for the random variable RV.hasHeight

given the domain is a Person and another distribution given the domain is a Volley-

ballPlayer (subclass of Person). So, at runtime, if someone is known only to be a person,

then the first distribution will be used, however, if it is known that this person is in fact a

volleyball player, then the second and more specific distribution will be used. In PR-OWL

1, since the input and context nodes were linked directly with a resident node, the user

would be forced to choose one of the two distributions before runtime, during modeling.

This was clearly not flexible enough to support polymorphism.

The polymorphism rules in PR-OWL 2 to decide which MFrag to instantiate in prece-

dence order are:

1. Choose the MFrag where the resident node has the argument with the most specific

class;

2. If more than one MFrag can be chosen from rule 1, then choose the MFrag with

satisfied context nodes;

3. If more than one MFrag with satisfied context nodes exists, then the model is incon-

sistent;

4. If there is no MFrag with satisfied context nodes, but only one with unknown context

nodes (not satisfied, but not unsatisfied either), then choose this MFrag;

72

5. Otherwise, use the default distribution for that random variable.

To clarify the rules presented, let’s extend the example given previously. Imagine we

have the following hierarchy structure5:

• Animal

– IntelligentAnimal

⇤ Person

· VolleyballPlayer

– NonIntelligentAnimal

⇤ Biped

· Bird

⇤ Quadruped

· Horse

· Dog

Imagine now that besides having a distribution for the height of a person and a volleyball

player, we also have MFrags with distributions for the height of bipeds, quadrupeds, birds,

and horses, but not of dogs.

As explained before, if the individual is a person, then we should use the distribution for

person. However, if we also know that this individual is a volleyball player, then because of

rule 1, the more specific distribution should be used, which is the distribution for volleyball

players.

In cases like the one just described, where we define a probability for a more specific

class (like height for volleyball players) and also for a less specific class (like height for

persons) then the correct thing to do is to interpret the probability for the less specific class

as applying only to individuals that do not satisfy the more specific constraints.

Therefore, the correct rule would be:
5This is not supposed to be a good example of ontology engineering. The focus here is to present a really

simple example just to illustrate the use and behavior of polymorphism.

73

• If it is known that Bill is a volleyball player, use Normal(1.9, 0.2);

• If it is known that Bill is not a volleyball player, use Normal(1.7, 0.2);

• If it is only known that Bill is a person, then use Pr(V olleyballP layer) ⇤

Normal(1.9, 0.2) + (1 � Pr(V olleyballP layer)) ⇤ Normal(1.7, 0.2).

This requires us to specify a subclass probability if we want to define probabilities

for a more specific subclass and are not always going to know for sure whether or not

an individual belongs to the subclass. A reasoner would give an error message that the

probability is undefined if we said Bill was a person and had not defined a probability that

a person was a volleyball player.

Now, we could have an approximate reasoning method that used the Person distribution

when we don’t know that the person isn’t a volleyball player. That is, we might allow a

reasoner to adopt a “negation by failure” rule as an approximation. This would be an

accurate approximation if the subclass had a low enough base rate and we didn’t have

strong evidence for belonging to the subclass. This approximation just described is the

approach defined in the polymorphism rules presented above.

To better illustrate why this is an approximation, imagine the following example:

Case 1 : Suppose we know Joe is a volleyball player. Then we choose the MFrag with the

most specific class, and his height is Normal(1.9, 0.2) meters.

Case 2 : Suppose we know Fred is not a volleyball player. The most specific class is

Person, which in our example is Normal(1.7, 0.2) meters.

Case 3 : Suppose we know Bill is a person. Then according to the polymorphism rules

described above his height would be Normal(1.7, 0.2) meters.

The problem is that this would imply there is a zero percent chance that Bill is a

volleyball player. This is because the rules of probability theory imply that his mean height

is 1.9 ⇤ Pr[isA(Bill, V olleyballP layer)] + 1.7 ⇤ (1� Pr[isA(Bill, V olleyballP layer)])

The only way to satisfy this equation is if Pr[isA(Bill, V olleyballP layer)] = 0.

74

Therefore, unless we know Bill is a volleyball player, or have directly assigned a non-zero

probability to his being a volleyball player, then we are e↵ectively assuming he cannot be

a volleyball player.

The same logic applies for the non-intelligent animals. So, using the approximation

rules defined above, if we know an individual is a biped, we should use the distribution for

bipeds, however, if we know that this individual is also a bird, then because of rule 1, the

more specific distribution should be used, which is the distribution for birds.

Nevertheless, if we know that the individual is a dog, the most specific distribution (rule

1) is the height of quadrupeds, since every dog is quadruped and there is no distribution

for the height of dogs.

Now, imagine that there are two di↵erent distributions for the height of persons. In one

there is a context node that says that the person has to be from Holland (known to be tall

people) and the other says that the person has to be from Japan (known to be less tall).

Looking just at the arguments of the resident nodes is not enough to decide which MFrag

to use, i.e., rule 1 cannot be used. However, if we now have an individual we know is

from Holland, because of rule 2, we should use the first MFrag (since it is the only one with

satisfied context nodes). On the other hand, if we know that the individual is from Japan,

because of rule 2, we should use the second MFrag (since it is the only one with satisfied

context nodes).

However, if for some reason this person has dual nationality being both from Holland

and from Japan, because of rule 3, the model is now considered inconsistent. In other words,

there is no way, based on the model, of deciding which MFrag is the correct one. If this was

allowed and an MFrag was chosen, for instance, at random, then it would be possible to

have di↵erent results based on the same model and knowledge base, which is inconsistent.

Nevertheless, an implementation of PR-OWL 2 could allow the user to define rules on how

to solve this kind of conflict. However, this is optional and is not covered by PR-OWL 2

semantics.

Suppose that we also have a random variable with the distribution for weight of animals.

75

However, suppose there is only one resident node with a specific distribution for weight of

persons. If we have an individual we only know is an animal, although there is no MFrag

with weight resident node that has satisfied context nodes, there is only one MFrag that

has the weight resident node with unknown context nodes. Therefore, because of rule 4,

this MFrag can be chosen by instantiating the type context node as an uncertain variable

and parent of the nodes in that MFrag, stating that if this animal is in fact a person then

use the distribution defined in this MFrag, otherwise, use the default distribution for the

random variable weight.

Assume now that the individual is in fact a house and we know that a house cannot

be an animal (disjoint from). Suppose also that there is no other distribution for heights

than the ones already presented. Then, clearly, there is no MFrag with height resident node

that has satisfied context nodes (they have, in fact, unsatisfied context nodes). Therefore,

because of rule 5, the default distribution for the height random variable should be used.

Finally, if we only know that an individual is an animal, but we have no further informa-

tion on what kind of animal it is, it is impossible to choose from the di↵erent distributions

available. Should we instantiate the MFrag that has the distribution on heights of persons

or should we instantiate the MFrag that has the distribution on heights of horses? Note

that, di↵erent than the previous example, the MFrags do not have unsatisfied context nodes,

in fact, they are uncertain. However, since more than one MFrag could be perfectly valid

by instantiating the type context node as an uncertain variable and parent of the nodes in

that MFrag, there is no correct answer. Therefore, the default behavior should be to use

the default distribution as defined in rule 5.

4.6 Type Uncertainty

A special kind of built-in Boolean random variable is isA(resource,class), which repre-

sents type, whereas its probability distribution represents type uncertainty. As expected,

this RV defines the uncertainty of the RDF property rdf:type. Listing 4.10 presents its

76

definition. The domain is defined by two arguments, the object (rdf:Resource), repre-

sented by the first argument isA.resource, and the type (rdf:Class), represented by

the second argument isA.class. Its range is Boolean (inferred from its type Boolean-

RandomVariable). Finally, its probability distribution is left in blank and the PR-OWL 2

reasoner should allow the knowledge engineer to define this distribution. The objective is

to give flexibility to the user in deciding the best default distribution to use (e.g., uniform

distribution, or a fixed low probability for true and the rest for false).

Listing 4.10: Built-in Boolean random variable for type uncertainty (isA(resource,
class))

1 I nd i v i d u a l : isA
2 Types:
3 BooleanRandomVariable
4 Fac t s :
5 hasArgument isA . c l a s s ,
6 hasArgument isA . re source ,
7 de f ine sUncer ta in tyOf ”&rd f ; type ”ˆˆxsd:anyURI
8
9 I nd i v i d u a l : isA . r e s ou r c e

10 Types:
11 MappingArgument
12 Fac t s :
13 isArgumentOf isA ,
14 i sSubs t i tutedBy ”&rd f ; Resource ”ˆˆxsd:anyURI ,
15 i s Sub j e c t I n ”&rd f ; type ”ˆˆxsd:anyURI ,
16 hasArgumentNumber 1
17
18 I nd i v i d u a l : isA . c l a s s
19 Types:
20 MappingArgument
21 Fac t s :
22 isArgumentOf isA ,
23 i sOb j e c t In ”&rd f ; type ”ˆˆxsd:anyURI ,
24 i sSubs t i tutedBy ”&rd f ; Class ”ˆˆxsd:anyURI ,
25 hasArgumentNumber 2

When defining the types of ordinary variables or exemplars to use in MFrags, the prop-

erty used should be the isSubstitutedBy. However, when evaluating the context node, if it

is not known whether a given individual is or is not of that specific type defined by the prop-

erty isSubstitutedBy, then the reasoner must look for an MFrag with the resident node

isA for that unknown type. For instance, suppose that we have a random variable with the

77

distribution for weight of animals. However, suppose there is only one resident node with a

specific distribution for weight of persons (i.e., there is an ordinary variable person, where

person isSubstitutedBy Person). Assume also that Person rdfs:subClassOf Animal.

If we have an individual we only know is an animal, although there is no MFrag with

weight resident node that has satisfied context nodes, there is only one MFrag that has the

weight resident node with unknown context nodes (the isA(person, Person), represented

by the ordinary variable person, where person isSubstitutedBy Person). Therefore,

this MFrag can be chosen by instantiating the type context node (isA(person, Person))

as an uncertain variable and parent of the nodes in that MFrag, stating that if this animal

is in fact a person then use the distribution defined in this MFrag, otherwise, use the default

distribution for the random variable weight. (see Section 4.5 for more information on entity

hierarchy and polymorphism).

Although there is no built-in random variable for subtypes in PR-OWL 2, the PR-OWL

reasoner must ensure that if it is known that class A is subtype of class B, then an individual

a of class A is also of type B, i.e., isA(a,B)=true.

4.7 Defining Nodes in PR-OWL 2

Figure 4.18 presents the main MEBN elements and their relations. A MEBN theory is

composed of one or more MEBN fragments. A MEBN fragment is composed of one or more

nodes and it can also have ordinary variables and exemplars, which are used in first-order

logic formulas (represented by MEBN expressions). A node has its representation defined

by a MEBN expression. An MEBN expression is a first-order logic formula or term, of a

specific type, represented by the random variable (e.g., an equal formula has the equalTo

random variable as its type). A random variable has a default probability distribution.

Finally, there are three types of nodes. A resident node can be parent of another resident

node and has a probability distributions associated with it. An input node represents a

first-order formula or term that influences the distribution of at least one resident node, but

78

has its distribution defined by the random variables it uses (not defined within that MEBN

fragment). Finally, context nodes are first-order formulas that have to be true in order for

the probability distributions defined within their MEBN fragment to be valid.

Figure 4.18: Graph of the main MEBN elements and their relations.

A Node is part of an MFrag and it can define the distribution of a random variable within

that MFrag (a resident node, represented by the class ResidentNode), a random variable

that influences the distribution of nodes within that MFrag but has its distribution defined

somewhere else (an input node, represented by the class InputNode), or a random variable

that expresses the context in which the probability distributions within that MFrag are

valid (a context node, represented by the class ContextNode). ResidentNode, InputNode,

and ContextNode are disjoint classes.

In all cases, the random variable represented by the node is defined as a MEBN expres-

sion (see Subsection 4.7.3 for more information). Besides that, every node is resident in

79

exactly one MFrag.

Since there were not major changes in the definition of MTheories, MFrags, and nodes

in PR-OWL 2, except the use of MEBN expressions, we will briefly describe them in Sub-

sections 4.7.1 and 4.7.2. For detailed information about these concepts see Appendix A

Section A.2. Then, Subsection 4.7.3 will present the main concepts on defining MEBN

expressions, however, for further detail we refer the reader to Appendix A Section A.3.

Finally, Subsection 4.7.4 present di↵erent examples of domain-specific nodes and finding

nodes.

4.7.1 Defining Domain-Specific Knowledge

All generative MFrags created by the ontology engineer (i.e. the domain expert) are indi-

viduals of DomainMFrag. A DomainMFrag is the subclass of class MFrag that includes all the

domain-specific MFrags. It is disjoint from the class FindingMFrag.

Figure 4.19 presents the main concepts in defining a domain-specific MFrag and its

relations. A domain-specific MFrag, besides exemplars and ordinary variables, has more

specific input nodes and resident nodes (namely, GenerativeInputNode and DomainResi-

dentNode, respectively). A domain resident node only accepts simple MEBN expressions,

while generative input nodes accept any type of MEBN expression. Besides input nodes and

resident nodes, a domain MFrag has context nodes, which are responsible for defining the

restrictions that must be satisfied in order for the probabilistic relations and distributions

within that MFrag to be valid. As a context node represents a constraint that must be true,

it only accepts Boolean MEBN expressions.

80

Figure 4.19: Graph with the main elements necessary to define a domain-specific MEBN

fragment.

A DomainResidentNode is the subclass of ResidentNode that includes all domain-

specific resident nodes. It is disjoint from FindingResidentNode. It only defines a dis-

tribution over a simple MEBN expression. It can only have parents of type GenerativeIn-

putNode or DomainResidentNode. Finally, a DomainResidentNode can only be defined in

exactly one DomainMFrag.

A GenerativeInputNode is a random variable that has its distribution defined some-

where else, but its value influences some DomainResidentNode within that MFrag. It can

only be an input node in exactly one DomainMFrag. Finally, it is disjoint from FindingIn-

putNode.

A ContextNode defines a constraint on the MFrag where it is defined. Often these

constraints define the type of arguments used for resident nodes (e.g., isA(mother, Per-

son), isA(person, Person)), reference constraints between these arguments (e.g., mother

= motherOf(person)), etc. It is disjoint from ResidentNode and InputNode. It can only

represent a Boolean MEBN expression (see BooleanMExpression in Subsection 4.7.3 for

81

more information), since it is being stated that this Boolean expression, the constraint, has

to be true (satisfied). Finally, it can only be a context node in exactly one DomainMFrag.

4.7.2 Defining Findings

A FindingMFrag is used to convey information about findings, which is the default way

of entering evidence in an MEBN theory so a probabilistic algorithm can be applied to

perform inferences regarding the new evidence. It has no context nodes, only one input and

one resident node.

Figure 4.20: Graph with the main concepts and their relations for defining findings in an

MEBN theory.

Figure 4.20 presents the main concepts involved in entering findings in an MEBN theory.

Besides having ordinary variables and exemplars that can be used in formulas, which defines

the finding, a finding MFrag only has one finding resident node and one finding input node.

Since the idea of a finding is to say that some formula is true, the only MEBN expression

82

allowed for finding resident nodes and input nodes is Boolean.

The MEBN representation of a finding is shown in Figure 4.21. It can be seen that both

the finding resident and input nodes represent the same Boolean expression. The di↵erence

is that a finding resident node only has true and absurd as possible values and its local

probability distribution is defined as true if the input node is true and absurd otherwise.

The finding input node has the same behavior as any regular input node, except that it can

only represent Boolean expressions.

Figure 4.21: Bayesian network showing the pattern for representing findings in MEBN.

A FindingResidentNode is the subclass of ResidentNode that includes all finding

nodes. Finding nodes convey new evidence into a probabilistic system via a FindingM-

Frag. It is disjoint from DomainResidentNode. It can only represent a Boolean MEBN

expressions (see BooleanMExpression in Subsection 4.7.3 for more information), since it is

being stated that this Boolean expression is true (a finding). It has only one parent and it

83

has to be of the type FindingInputNode. It cannot be parent of any other node. Finally,

it can only be defined in exactly one FindingMFrag.

A FindingInputNode represents a Boolean MEBN expression (see BooleanMExpression

in Subsection 4.7.3 for more information), which influences some FindingResidentNode

within that MFrag. In fact, it can only be parent of one node, and this node has to by of

type FindingResidentNode. It can only be an input node in exactly one FindingMFrag.

Finally, it is disjoint from GenerativeInputNode.

4.7.3 MEBN Expressions

An MExpression represents a first-order logic formula or term, which has the random vari-

able as its main element (e.g., equalTo, or, and, livesAt, etc). Figure 4.22 presents the

main concepts and their relations necessary for defining MEBN expressions and their argu-

ments. The number of arguments defined on the MEBN expression has to be the same as

the number of arguments defined on the RV it refers to. Furthermore, the argument types

have to be compatible. Every node is represented by an MEBN expression. However, some

nodes can only be represented by a specific type of MExpression. FindingResidentNode,

FindingInputNode, and ContextNode can only be represented by BooleanMExpression. A

BooleanMExpression only allow a specific type of random variable, BooleanRandomVari-

able. DomainResidentNode can only be represented by SimpleMExpression, which is an

MEBN expression that only has arguments of type OrdinaryVariable or ConstantArgu-

ment, since it represents an atomic formula or term.

There are mainly two di↵erent types of arguments:

1. those used for mapping random variable arguments to OWL properties domain or

range (represented by the class MappingArgument, which is discussed in Subsec-

tion 4.4.4), and

2. those used in MEBN expressions (MExpressionArguemnt, ExemplarArgument, Ordi-

naryVariableArgument, and ConstantArgument).

84

Figure 4.22: Graph with main concepts and their relations necessary for defining arguments

and MEBN expressions.

A ConstantArgument is used to represent formulas or terms which use either

data and/or object constants, e.g., equalTo(livesAt(Bill), address1) (where Bill

and address1 are constants, which represent Person and Address, respectively),

equalTo(hasAnnualIncome(Bill), 75,000.00) (assuming income is just a number, which

represents value in US Dollar and Bill and 75,000.00 are constants, which represent Per-

son and float, respectively).

An OrdinaryVariableArgument is used to represent free variable arguments (not quan-

tified over) used in a formula or term, e.g., livesAt(person), where person is a free

variable, that can be substituted by an individual of the class Person.

An ExemplarArgument is used to represent a filler for a bound variable (variables

that are quantified over) used in a formula, e.g., forAll(mother) (forAll(child) (im-

plies(hasChild(mother,child), isRelated(child,mother)))), where mother and

child are bound variables of type Person.

Finally, an MExpressionArgument is used to allow the construction of com-

plex formulas or terms (more than one RV used in the formula or term), e.g.,

85

equalTo(livesAt(person1), livesAt(person2)), where person1 and person2 are free

variables of type Person.

4.7.4 Examples of Nodes

In the following subsections we will present di↵erent examples of nodes. First, we present

examples of nodes to allow the specification of domain-specific knowledge for defining that

two people are more likely to be related if they live at the same address. Then, we present

examples of nodes to allow the specification of the evidence that two people live at the same

address.

Domain-Specific Nodes

Figure 4.23 presents a domain-specific MFrag for representing the probabilistic knowledge

that two people are more likely to be related if they live at the same address.

Figure 4.23: Nodes for representing that two people are more likely to be related if they

live at the same address.

86

Before we get into the details of how to represent such MFrag in PR-OWL 2, it is

important to discuss property constraints or restrictions such as symmetry, since isRelated,

which is discussed in this MFrag, is a symmetric property.

In OWL there are various restrictions, like symmetry, that one can assign to properties.

In order to represent such restrictions in PR-OWL, we first need to understand how to

represent them in regular BNs.

Figure 4.24: A common way to define restrictions like symmetry in BNs.

Figure 4.24 presents a common way to represent constraints like symmetry in BNs. The

relations liveTogether, isRelated, and exchangeEmail are symmetrical. These symme-

tries are represented by stating that the nodes isSymmetric1, isSymmetric2, and isSym-

metric3 are true, respectively. The symmetrical restriction is defined by the CPT, where

the restriction is true if both parents are true or if both are false.

87

(a) Posterior probability of symmetrical property
liveTogether using symmetry constraint node.

(b) Double counting of symmetrical evidence.

Figure 4.25: Posterior probabilities for symmetrical properties showing how the constraint

works, but unfortunately it double counts evidence.

Figure 4.25(a) shows that this actually works. By saying that liveTogether is a sym-

metrical property through the evidence in isSymmetric1, we can see that if we say that

liveTogether p1 p2 is true, the node liveTogether p2 p1 automatically gets the same

value, i.e., 100% for the state true. However, as we can see in Figure 4.25(b) if we say

that isRelated is also a symmetrical property through the evidence in isSymmetric2, we

can see that the posterior for both isRealted p1 p2 and isRelated p2 p1 change, which

should not be the case. This happens because the evidence that p1 and p2 live together

is double counted. So it is clear that this solution cannot be applied, otherwise we would

double count every time we have a restriction like this one in our model.

Figure 4.26 presents another solution for the same problem. Now, instead of having a

node defining the symmetrical restriction, an order is defined amongst the arguments of the

relation. For instance, we assume that there is an order in instances of Person and that p1

comes before p2. Once we have the order, we use this order to define which node gets the

normal distribution defined by the CPT of the property and which node gets the CPT of

the restriction itself. In our scenario, we can see that all nodes that have arguments p1 p2

88

get the regular CPT defined for their relation and the nodes that have arguments p2 p1

get the CPT of the restriction, i.e., true if the parent is true and false if the parent is false.

This will guarantee that they will have the same value, independent of where the evidence

is entered.

Figure 4.26: Defining restrictions like symmetry in BNs using order on arguments.

Figure 4.27 shows that this actually works. By saying that that liveTogether p1 p2

is true, the node liveTogether p2 p1 automatically gets the same value, i.e., 100% for

the state true. Furthermore, the relation isRelated is already mapped as a symmetrical

property, however, this does not a↵ect the posterior as it happened in the previous solution.

89

We can see that the posterior for both isRealted p1 p2 and isRelated p2 p1 are the same

and still 90%, as expected.

Figure 4.27: Posterior probabilities for symmetrical properties using order on arguments,

which does not cause double counting of evidence.

The solution just presented can be generalized in order to apply them to PR-OWL

random variables. However, this will not be included as a built-in feature in PR-OWL 2.

Nevertheless, PR-OWL 2 is expressive enough to allow the user to define such restrictions,

the same way existential uncertainty is not built-in, but can be easily represented in the

language (see Section 4.8 for further details on existential uncertainty).

Listing 4.11 presents an MFrag called PersonalInformation, that defines the distribu-

tion of two di↵erent people being related given they live at the same address, as seen in

Figure 4.23.

90

Listing 4.11: Domain MFrag for representing that two people are more likely to be related
if they live at the same address

1 I nd i v i d u a l : MFrag . Persona l In format ion
2 Types:
3 pr�owl2:DomainMFrag
4 Fac t s :
5 pr�owl2:isMFragOf MTheory . FraudIdent i f i ca t ionInPubl i cProcurement ,
6 pr�owl2 :hasOrdinaryVar iab le MFrag . Persona l In format ion .OV. person1 ,
7 pr�owl2 :hasOrdinaryVar iab le MFrag . Persona l In format ion .OV. person2 ,
8 pr�owl2:hasContextNode MFrag . Persona l In format ion .CN. not1 ,
9 pr�owl2:hasInputNode MFrag . Persona l In format ion .GIN . equalTo1 ,

10 pr�owl2:hasResidentNode MFrag . Persona l In format ion .DRN. i sRe l a t ed

Listing 4.12 presents the ordinary variables person1 and person2, which can be substi-

tuted by individuals of the class Person. These ordinary variables are defined in the MFrag

PersonalInformation. Finally, these ordinary variables are used as arguments in three

di↵erent MEBN expressions, which represent nodes in their MFrag.

Listing 4.12: Ordinary variables used to represent two di↵erent persons in the same domain
MFrag

1 I nd i v i d u a l : MFrag . Persona l In format ion .OV. person1
2 Types:
3 pr�owl2 :Ord inaryVar iab le
4 Fac t s :
5 pr�owl2 : i sOrd ina ryVar i ab l e In MFrag . Persona l In format ion ,
6 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME

. equalTo1 .OVA. person1 ,
7 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .ME. l i v e sAt1 .OVA. person1 ,
8 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe l a t ed .OVA. person1 ,
9 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI

10
11 I nd i v i d u a l : MFrag . Persona l In format ion .OV. person2
12 Types:
13 pr�owl2 :Ord inaryVar iab le
14 Fac t s :
15 pr�owl2 : i sOrd ina ryVar i ab l e In MFrag . Persona l In format ion ,
16 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME

. equalTo1 .OVA. person2 ,
17 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .ME. l i v e sAt1 .OVA. person2 ,
18 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe l a t ed .OVA. person2 ,
19 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI

91

Listing 4.13 presents a context node for the Boolean expression not(equalTo(person1,

person2)). In other words, this context node states that within its MFrag, person1 and

person2 have to be di↵erent.

Listing 4.13: Context node example
1 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1
2 Types:
3 pr�owl2:ContextNode
4 Fac t s :
5 pr�owl2: i sContextNodeIn MFrag . Persona l In format ion ,
6 pr�owl2:hasMExpression MFrag . Persona l In format ion .CN. not1 .BME. not1

Listing 4.14 presents how the Boolean expression not(equalTo(person1, person2))

for the context node MFrag.PersonalInformation.CN.not1 is defined.

Listing 4.14: Boolean expression for the context node not(equalTo(person1, person2))

1 < !�� The Boolean expre s s i on not (equalTo (person1 , person2)) ��>
2 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1 .BME. not1
3 Types:
4 pr�owl2:BooleanMExpression
5 Fac t s :
6 pr�owl2:typeOfMExpression pr�owl2:not ,
7 pr�owl2:hasArgument MFrag . Persona l In format ion .CN. not1 .BME. not1 .MEA. arg1 ,
8 pr�owl2: i sMExpress ionOf MFrag . Persona l In format ion .CN. not1
9

10 < !�� The f i r s t and only argument equalTo (person1 , person2) o f not (equalTo (

person1 , person2)) ��>
11 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1 .BME. not1 .MEA. arg1
12 Types:
13 pr�owl2:MExpressionArgument
14 Fac t s :
15 pr�owl2: isArgumentOf MFrag . Persona l In format ion .CN. not1 .BME. not1 ,
16 pr�owl2:typeOfArgument MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME.

equalTo1 ,
17 pr�owl2:hasArgumentNumber 1
18
19 < !�� The type o f the f i r s t argument , which i s the exp re s s i on equalTo (person1 ,

person2) ��>
20 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME. equalTo1
21 Types:
22 pr�owl2:BooleanMExpression
23 Fac t s :
24 pr�owl2:typeOfMExpression pr�owl2:equalTo ,
25 pr�owl2:hasArgument MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME.

equalTo1 .OVA. person1 ,
26 pr�owl2:hasArgument MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME.

equalTo1 .OVA. person2 ,

92

27 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .CN. not1 .BME. not1 .MEA
. arg1

28
29 < !�� The f i r s t argument person1 o f the expre s s i on equalTo (person1 , person2) ��

>
30 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME. equalTo1 .OVA.

person1
31 Types:
32 pr�owl2:OrdinaryVariableArgument
33 Fac t s :
34 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person1 ,
35 pr�owl2: isArgumentOf MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME.

equalTo1 ,
36 pr�owl2:hasArgumentNumber 1
37
38 < !�� The second argument person2 o f the expre s s i on equalTo (person1 , person2)

��>
39 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME. equalTo1 .OVA.

person2
40 Types:
41 pr�owl2:OrdinaryVariableArgument
42 Fac t s :
43 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person2 ,
44 pr�owl2: isArgumentOf MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME.

equalTo1 ,
45 pr�owl2:hasArgumentNumber 2

Listing 4.15 presents the generative input node for the MEBN expres-

sion equalTo(livesAt(person1), livesAt(person2)) defined for the MFrag

MFrag.PersonalInformation. It is parent of the resident node isRelated(person1,

person2). This node state that person1 and person2 live at the same address and is used

to influence the distribution of these two people being related.

Listing 4.15: Generative input node equalTo(livesAt(person1), livesAt(person2))

1 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1
2 Types:
3 pr�owl2:Generat iveInputNode
4 Fac t s :
5 pr�owl2 : i s InputNodeIn MFrag . Persona l In format ion ,
6 pr�owl2 : i sParentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed
7 pr�owl2:hasMExpression MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1

Listing 4.16 presents how the Boolean expression

93

equalTo(livesAt(person1), livesAt(person2)) for the generative input node

MFrag.PersonalInformation.GIN.equalTo1 is defined.

Listing 4.16: Boolean expression for the generative input node
equalTo(livesAt(person1), livesAt(person2))

1 < !�� The Boolean expre s s i on equalTo (l i v e sA t (person1) , l i v e sA t (person2)) ��>
2 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1
3 Types:
4 pr�owl2:BooleanMExpression
5 Fac t s :
6 pr�owl2:typeOfMExpression pr�owl2:equalTo ,
7 pr�owl2:hasArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

MEA. arg2 ,
8 pr�owl2: i sMExpress ionOf MFrag . Persona l In format ion .GIN . equalTo1 ,
9 pr�owl2:hasArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

MEA. arg1
10
11 < !�� The f i r s t argument l i v e sA t (person1) o f equalTo (l i v e sA t (person1) , l i v e sA t (

person2)) ��>
12 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .MEA. arg1
13 Types:
14 pr�owl2:MExpressionArgument
15 Fac t s :
16 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 ,
17 pr�owl2:typeOfArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .ME. l ivesAt1 ,
18 pr�owl2:hasArgumentNumber 1
19
20 < !�� The second argument l i v e sA t (person2) o f equalTo (l i v e sA t (person1) , l i v e sA t

(person2)) ��>
21 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .MEA. arg2
22 Types:
23 pr�owl2:MExpressionArgument
24 Fac t s :
25 pr�owl2:typeOfArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .ME. l ivesAt2 ,
26 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 ,
27 pr�owl2:hasArgumentNumber 2
28
29 < !�� The type o f the f i r s t argument , which i s the exp re s s i on l i v e sA t (person1)

��>
30 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .ME. l i v e sAt1
31 Types:
32 pr�owl2:MExpression
33 Fac t s :
34 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .MEA. arg1 ,
35 pr�owl2:hasArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

ME. l i v e sAt1 .OVA. person1 ,
36 pr�owl2:typeOfMExpression RV. l i v e sAt
37
38 < !�� The type o f the second argument , which i s the expre s s i on l i v e sA t (person2)

��>

94

39 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .ME. l i v e sAt2
40 Types:
41 pr�owl2:MExpression
42 Fac t s :
43 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1 .MEA. arg2 ,
44 pr�owl2:hasArgument MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

ME. l i v e sAt2 .OVA. person2 ,
45 pr�owl2:typeOfMExpression RV. l i v e sAt
46
47 < !�� The f i r s t and only argument person1 o f the expre s s i on l i v e sA t (person1) ��

>
48 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .ME. l i v e sAt1 .

OVA. person1
49 Types:
50 pr�owl2:OrdinaryVariableArgument
51 Fac t s :
52 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

ME. l ive sAt1 ,
53 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person1 ,
54 pr�owl2:hasArgumentNumber 1
55
56 < !�� The f i r s t and only argument person2 o f the expre s s i on l i v e sA t (person2) ��

>
57 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .ME. l i v e sAt2 .

OVA. person2
58 Types:
59 pr�owl2:OrdinaryVariableArgument
60 Fac t s :
61 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .

ME. l ive sAt2 ,
62 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person2 ,
63 pr�owl2:hasArgumentNumber 1

Listing 4.17: Domain resident node isRelated(person1, person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed
2 Types:
3 pr�owl2:DomainResidentNode
4 Fac t s :
5 pr�owl2 : i sRes identNodeIn MFrag . Persona l In format ion ,
6 pr�owl2 :hasParent MFrag . Persona l In format ion .GIN . equalTo1 ,
7 pr�owl2:hasMExpression MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe lated ,
8 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on MFrag . Persona l In format ion .DRN.

i sRe l a t ed .PT. d i s t 1

Listing 4.17 presents the domain resident node with a local probability distribution

95

for the random variable isRelated(person1, person2), conditioned on the input node

equalTo(livesAt(person1), livesAt(person2)). The distribution is consistent with the

idea that if two people live at the same address they are more likely to be related.

Listing 4.18 presents a simple MEBN expression for the resident node isRela-

ted(person1, person2). The type of formula for this MEBN expression is the random

variable isRelated. Finally, it has two ordinary variable arguments, person1 and person2.

Listing 4.18: Simple MEBN expression for domain resident node isRelated(person1,
person2)

1 < !�� The s imple e xp re s s i on i sRe l a t e d (person1 , person2) ��>
2 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed
3 Types:
4 pr�owl2:SimpleMExpression
5 Fac t s :
6 pr�owl2:typeOfMExpression RV. i sRe la ted ,
7 pr�owl2: i sMExpress ionOf MFrag . Persona l In format ion .DRN. i sRe la ted ,
8 pr�owl2:hasArgument MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed

.OVA. person1 ,
9 pr�owl2:hasArgument MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed

.OVA. person2
10
11 < !�� The f i r s t argument person1 o f i sRe l a t e d (person1 , person2) ��>
12 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person1
13 Types:
14 pr�owl2:OrdinaryVariableArgument
15 Fac t s :
16 pr�owl2: isArgumentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe lated ,
17 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person1 ,
18 pr�owl2:hasArgumentNumber 1
19
20 < !�� The second argument person2 o f i sRe l a t e d (person1 , person2) ��>
21 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person2
22 Types:
23 pr�owl2:OrdinaryVariableArgument
24 Fac t s :
25 pr�owl2: isArgumentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe lated ,
26 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person2 ,
27 pr�owl2:hasArgumentNumber 2

Finally, Listing 4.19 presents the declarative probability distribution for the domain

resident node isRelated(person1, person2). This distribution is consistent with the

idea that if two people live at the same address, they are more likely to be related.

96

Listing 4.19: Declarative probability distribution for domain resident node isRela-
ted(person1, person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .DD. d i s t 1
2 Types:
3 pr�ow l 2 :De c l a r a t i v eD i s t r i bu t i on
4 Fac t s :
5 pr�owl2 : i sRepresentedAs ”UnBBayes”ˆˆ x sd : s t r i n g ,
6 pr�owl2 :hasDec l a ra t i on
7 ” i f any person1 . person2 have (l i v e sAt (person1) = l i v e sAt (person2)) [
8 t rue = . 9 ,
9 f a l s e = . 1 ,

10 absurd = 0
11] e l s e [
12 t rue = .001 ,
13 f a l s e = .999 ,
14 absurd = 0
15] ”ˆˆ x s d : s t r i n g

Finding Nodes

To define a finding in PR-OWL 2, we need to define one finding input node and one finding

resident node within its finding MFrag. Figure 4.28 presents the finding MFrag and its

nodes for defining the evidence that Bill has annual income of 75,000.00.

Figure 4.28: Nodes for representing the finding that Bill has annual income of 75,000.00.

97

Listing 4.20 presents the code for the finding MFrag in Figure 4.28, the Finding1 MFrag.

It has one finding resident node called MFrag.Finding1.FRN.equalTo1 and one finding

input node called MFrag.Finding1.FIN.equalTo1.

Listing 4.20: Finding MFrag for evidence equalTo(hasAnnualIncome(Bill), 75,000.00)

1 I nd i v i d u a l : MFrag . Finding1
2 Types:
3 pr�owl2:FindingMFrag
4 Fac t s :
5 pr�owl2:isMFragOf MTheory . FraudIdent i f i ca t ionInPubl i cProcurement ,
6 pr�owl2:hasInputNode MFrag . Finding1 . FIN . equalTo1 ,
7 pr�owl2:hasResidentNode MFrag . Finding1 .FRN. equalTo1

Listing 4.21 presents the finding input node (MFrag.Finding1.FIN.equalTo1) rep-

resented by the Boolean expression equalTo(hasAnnualIncome(Bill), 75,000.00)

(MFrag.Finding1.FIN.equalTo1.BME.equalTo1), which is parent of the finding resident

node MFrag.Finding1.FRN.equalTo1.

Listing 4.21: Finding input node for evidence equalTo(hasAnnualIncome(Bill),
75,000.00)

1 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1
2 Types:
3 pr�owl2:FindingInputNode
4 Fac t s :
5 pr�owl2 : i sParentOf MFrag . Finding1 .FRN. equalTo1 ,
6 pr�owl2:hasMExpression MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1

Listing 4.22 presents how the Boolean expression equalTo(hasAnnualIncome(Bill),

75,000.00) for the finding input node MFrag.Finding1.FIN.equalTo1 is defined.

Listing 4.22: Boolean expression of the finding input node for evidence
equalTo(hasAnnualIncome(Bill), 75,000.00)

1 < !�� The Boolean expre s s i on equalTo (hasAnnualIncome (B i l l) , 75 ,000.00) ��>
2 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1
3 Types:
4 pr�owl2:BooleanMExpression
5 Fac t s :
6 pr�owl2:typeOfMExpression pr�owl2:equalTo ,

98

7 pr�owl2:hasArgument MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .MA. arg1 ,
8 pr�owl2: i sMExpress ionOf MFrag . Finding1 . FIN . equalTo1 ,
9 pr�owl2:hasArgument MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .CA. f l o a t 1

10
11 < !�� The f i r s t argument hasAnnualIncome (B i l l) o f equalTo (hasAnnualIncome (B i l l)

, 75 ,000.00) ��>
12 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .MA. arg1
13 Types:
14 pr�owl2:MExpressionArgument
15 Fac t s :
16 pr�owl2: isArgumentOf MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 ,
17 pr�owl2:typeOfArgument MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 ,
18 pr�owl2:hasArgumentNumber 1
19
20 < !�� The type o f the f i r s t argument , which i s the exp re s s i on hasAnnualIncome (

B i l l) ��>
21 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1
22 Types:
23 pr�owl2:MExpression
24 Fac t s :
25 pr�owl2:typeOfMExpression RV. hasAnnualIncome ,
26 pr�owl2:isTypeOfArgumentIn MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .MA.

arg1 ,
27 pr�owl2:hasArgument MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 .CA. person1
28
29 < !�� The f i r s t and only argument o f the expre s s i on hasAnnualIncome (B i l l) ��>
30 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 .CA.

person1
31 Types:
32 pr�owl2:ConstantArgument
33 Fac t s :
34 pr�owl2:typeOfArgument B i l l ,
35 pr�owl2: isArgumentOf MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 ,
36 pr�owl2:hasArgumentNumber 1
37
38 < !�� The type o f the f i r s t and only argument o f the expre s s i on hasAnnualIncome

(B i l l) , which i s the person B i l l ��>
39 I nd i v i d u a l : B i l l
40 Types:
41 Person
42
43 < !�� The second argument 75 ,000.00 o f equalTo (hasAnnualIncome (B i l l) ,

75 ,000.00) ��>
44 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 .CA. f l o a t 1
45 Types:
46 pr�owl2:ConstantArgument
47 Fac t s :
48 pr�owl2: isArgumentOf MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1 ,
49 pr�owl2:hasArgumentNumber 2 ,
50 pr�owl2:typeOfDataArgument 75000 f

99

Listing 4.23 presents the finding resident node (MFrag.Finding1.FRN.equalTo1)

represented by the Boolean expression equalTo(hasAnnualIncome(Bill), 75,000.00)

(MFrag.Finding1.FRN.equalTo1.BME.equalTo1).

Listing 4.23: Finding resident node example
1 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1
2 Types:
3 pr�owl2:FindingResidentNode
4 Fac t s :
5 pr�owl2 :hasParent MFrag . Finding1 . FIN . equalTo1 ,
6 pr�owl2:hasMExpression MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1

Finally, Listing 4.24 presents how the finding resident node

MFrag.Finding1.FRN.equalTo1 is represented as the Boolean expression

equalTo(hasAnnualIncome(Bill), 75,000.00).

Listing 4.24: Boolean expression of the finding resident node for evidence
equalTo(hasAnnualIncome(Bill), 75,000.00)

1 < !�� The Boolean expre s s i on equalTo (hasAnnualIncome (B i l l) , 75 ,000.00) ��>
2 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1
3 Types:
4 pr�owl2:BooleanMExpression
5 Fac t s :
6 pr�owl2:typeOfMExpression pr�owl2:equalTo ,
7 pr�owl2:hasArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA. arg1 ,
8 pr�owl2: i sMExpress ionOf MFrag . Finding1 .FRN. equalTo1 ,
9 pr�owl2:hasArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .CA. f l o a t 1

10
11 < !�� The f i r s t argument hasAnnualIncome (B i l l) o f equalTo (hasAnnualIncome (B i l l)

, 75 ,000.00) ��>
12 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA. arg1
13 Types:
14 pr�owl2:MExpressionArgument
15 Fac t s :
16 pr�owl2: isArgumentOf MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 ,
17 pr�owl2:typeOfArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 ,
18 pr�owl2:hasArgumentNumber 1
19
20 < !�� The type o f the f i r s t argument , which i s the exp re s s i on hasAnnualIncome (

B i l l) ��>
21 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1
22 Types:
23 pr�owl2:MExpression
24 Fac t s :

100

25 pr�owl2:typeOfMExpression RV. hasAnnualIncome ,
26 pr�owl2:isTypeOfArgumentIn MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA.

arg1 ,
27 pr�owl2:hasArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 .CA. person1
28
29 < !�� The f i r s t and only argument o f the expre s s i on hasAnnualIncome (B i l l) ��>
30 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 .CA.

person1
31 Types:
32 pr�owl2:ConstantArgument
33 Fac t s :
34 pr�owl2:typeOfArgument B i l l ,
35 pr�owl2: isArgumentOf MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME.

hasAnnualIncome1 ,
36 pr�owl2:hasArgumentNumber 1
37
38 < !�� The type o f the f i r s t and only argument o f the expre s s i on hasAnnualIncome

(B i l l) , which i s the person B i l l ��>
39 I nd i v i d u a l : B i l l
40 Types:
41 Person
42
43 < !�� The second argument 75 ,000.00 o f equalTo (hasAnnualIncome (B i l l) ,

75 ,000.00) ��>
44 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .CA. f l o a t 1
45 Types:
46 pr�owl2:ConstantArgument
47 Fac t s :
48 pr�owl2: isArgumentOf MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 ,
49 pr�owl2:hasArgumentNumber 2 ,
50 pr�owl2:typeOfDataArgument 75000 f

4.8 Types of Uncertainty Reasoning for the Semantic Web

Although there is no standardized query language for OWL[62], it is common to di↵eren-

tiate two types of reasoning: those associated with individuals; and those related to the

ontological schema.

On the one hand, reasoning with individuals is usually associated with queries that ask

for all individuals of a given class, or whether a given individual is of a given class. On

the other hand, reasoning with the schema is usually associated with asking whether two

classes are disjoint, classifying the ontology, or checking for global consistency.

From a logical perspective, the typical types of reasoning are:

101

1. Subsumption: to verify whether the knowledge base entails that C v D;

2. Class equivalence: to verify whether the knowledge base entails that C ⌘ D;

3. Class disjointness: to verify whether the knowledge base entails that C uD v?;

4. Global consistency: to verify whether the knowledge base has at least one model;

5. Class consistency: to verify that the knowledge base does not entail that class C v?;

6. Instance checking: to verify that the knowledge base entails that an individual a

belongs to a class C, i.e., C(a);

7. Instance retrieval: to retrieve all individuals of a given class.

Fortunately, all these di↵erent reasoning problems can be reduced to the one of satis-

fiability, i.e., whether the knowledge base has at least one model. This is a well-known

problem and several algorithms have been proposed with varying degrees of complexity,

depending on the underlying logic behind the ontological language being used.

In other words, the community is already familiar with the types of reasoning avail-

able for the semantic web when using logic-based languages like OWL. The question now

becomes: “What types of reasoning can one expect from probabilistic languages for the

semantic web?”

Poole et al. [110] emphasizes that it is not clear how to match the formalization of

random variables from probabilistic theories with the concepts of individuals, classes and

properties from current ontological languages like OWL. However, Poole et al. [110] says

that “We can reconcile these views by having properties of individuals correspond to random

variables.” This is the approach used in this work to integrate MEBN logic and OWL

language.

Also according to Poole et al. [110], when integrating probability theories and ontological

languages three types of uncertainty reasoning are expected:

• Existential uncertainty: what is the probability that an individual actually exists?

102

• Type uncertainty: what is the probability that an individual belongs to a given class?

• Property value uncertainty: what is the probability that an individual has a property

with a given value?

Although there is no built-in random variable to define existential uncertainty in PR-

OWL, it is easy to define such a random variable. For instance, Costa [27] presents the

random variable Exists(st) to reason about whether its argument is an actual starship.

In his example, he tries to verify whether a sensor report corresponds to one of the existing

starships, to a new one, or if this was just a spurious sensor report, and this starship does

not exist at all.

Poole et al. [110] also states that type uncertainty can be reduced to property value

uncertainty. This is exactly the approached described in Section 4.6, where we use the

built-in isA(resource, class) random variable to define the uncertainty of the RDF

type property. In fact, the careful reader might notice that we have also reduced the exis-

tential uncertainty to property value uncertainty. Reasoning about whether an individual

exists became identifying whether the property exists(individual) has value true for the

individual in question.

These types of uncertainty described by Poole et al. [110] are not the only ones. For

instance, Costa [27] talks about identity uncertainty and association uncertainty (also known

as reference uncertainty [47]). These too can be easily reduced to property value uncertainty.

Therefore, property value uncertainty plays a crucial role in probabilistic first-order language

reasoning, just as satisfiability does for logical reasoning. Note that uncertainty reasoning

augments logical reasoning rather than replacing it. That is, the types of reasoning identified

above as typical for logical knowledge bases are required for probabilistic knowledge bases,

along with the types of uncertainty reasoning described by Poole et al. [110].

Finally, it is important to notice that PR-OWL 2 besides integrating well with the web

ontology language (OWL) by mapping random variables to properties, it supports all major

uncertainty reasoning expected from a probabilistic first-order language.

103

Chapter 5: Uncertainty Modeling Process for Semantic

Technologies (UMP-ST)

As explained in Chapter 1, probabilistic ontologies can be used to represent experts’ knowl-

edge in an automated system in order to overcome the information overload problem. How-

ever, one major problem is that probabilistic ontologies are complex and hard to model. It

is challenging enough to design models that use only logic or only uncertainty; combining

the two poses an even greater challenge. In fact, in the past few years I have received

a number of e-mails from researchers all around the world asking for some information

and/or literature on how to build probabilistic ontologies. The problem is that there is no

methodology in the literature related to probabilistic ontology engineering.

Although there is now substantial literature about what PR-OWL is [27,29,31], how to

implement it [23, 20, 19, 26], and where it can be used [30, 32, 33, 77, 79, 80], little has been

written about how to model a probabilistic ontology.

This lack of methodology is not only associated with PR-OWL. Other languages that

use probabilistic methods for representing uncertainty on the SW have been advancing in

areas like inference [12,122], learning [36,86], and applications [14,120,87,13,41]. Examples

of such languages include OntoBayes [136], BayesOWL [37], and probabilistic extensions of

SHIF(D) and SHOIN(D) [85], and Markov Logic Networks (MLN). Despite this prolifera-

tion of languages and methods, little has been written about how to build such models.

Therefore, in this Chapter I will describe an approach for modeling a probabilistic

ontology and using it for plausible reasoning in applications that use Semantic Technologies.

The Uncertainty Reasoning Process for Semantic Technologies (URP-ST)1 presented
1In [22] I present this process as the modeling process. However, this is actually more than just modeling.

This process represents the sequence of phases necessary in order to achieve the capability of plausible
reasoning with semantic technologies. Therefore, I have changed the name of this process to Uncertainty
Reasoning Process for Semantic Technologies (URP-ST).

104

in Figure 5.1 is divided into three steps: First we have to model the domain (T-Box2),

then we need to populate the model with data (A-Box3), and finally we can use both the

model (T-Box) and the data available (A-Box), i.e., the KB, for reasoning. In other words,

in order to be able to reason with uncertainty, first we need a model, which describes

how the di↵erent concepts in our ontology interact under uncertainty by knowing which

evidence supports which hypothesis, etc. Once there is a model available, it needs to be

populated with the data available before it is able to do any reasoning. Finally, with the

model and with the data available, it is possible to present the inference engine with queries

for that domain, like isA(person1, Terrorist). Notice that unlike standard ontology

reasoning systems that return true only if that person is known to be a terrorist for sure,

the probabilistic ontology reasoning system will return the likelihood that the person is a

terrorist, for instance P (isA(person1, Terrorist) = true) = 75%.

Figure 5.1: Uncertainty Reasoning Process for ST (URP-ST).

2T-Box statements describe the part of the KB that defines terms of a controlled vocabulary, for example,
a set of classes and properties

3A-Box are statements about the vocabulary defined by the T-Box, for example, instances of classes.
T-Box and A-Box together form the KB.

105

Now I focus in detail on the modeling phase of the URP-ST. I call this phase the Un-

certainty Modeling Process for Semantic Technologies (UMP-ST). The UMP-ST consists of

four major disciplines: Requirements, Analysis & Design, Implementation, and Test. These

terms are borrowed from the Unified Process (UP)4 [68] with some modifications to reflect

our domain of ontology modeling instead of software development process. The method-

ology described here is also consistent with the Bayesian network modeling methodology

described by [72] and [81].

Figure 5.2 depicts the intensity of each discipline during the UMP-ST5. Like the UP,

UMP-ST is iterative and incremental. The basic idea behind iterative enhancement is

to model our domain incrementally, allowing the modeler to take advantage of what was

being learned during the modeling of earlier, incremental, deliverable versions of the model.

Learning comes from discovering new rules, entities, and relations that were not obvious

previously, which can give rise to new questions and evidence that might help us achieve

our previously defined goal as well as give rise to new goals. Some times it is possible

to test some of the rules defined during the Analysis & Design stage even before having

implemented it. This is usually done by creating simple probabilistic models to evaluate

whether the model will behave as expected before creating the more complex first-order

logic probabilistic models. That is why in the first iteration (I1) of the Inception phase we

have some testing happening before the implementation started.
4Although the most common instance of UP is the Rational Unified Process (RUP) [74], there are

alternatives, like the Open Unified Process (OpenUP) [9].
5In [22] I present this methodology as UMP for the Semantic Web. However, this methodology is not

restricted to the SW. Any application that uses semantic technologies can benefit from it, even if it is not
designed to be used on the Web. Therefore, I decided to change the name to UMP for Semantic Technologies.

106

Figure 5.2: Uncertainty Modeling Process for Semantic Technologies (UMP-ST).

Figure 5.3 presents the Probabilistic Ontology Modeling Cycle (POMC). This cycle

depicts the major activities or concepts in each discipline, how they usually interact, and

the natural order in which they occur. However, as described previously, this is not the

same as the waterfall model (see [114] for information about the waterfall model). I.e., it

is not necessary to go through implementation to be able to test the model. Besides that,

the interactions between the disciplines are not restricted to the arrows presented. In fact,

it is possible to have interactions between any pair of disciplines. For instance, it is not

uncommon to discover a problem in the rules defined in the Analysis & Design discipline

during the activities in the Test discipline. In other words, although, the arrow just shows

interaction between the Test and Requirement disciplines, it is possible to go directly from

Test to Analysis & Design.

107

Figure 5.3: Probabilistic Ontology Modeling Cycle (POMC) - Requirements (Goals), Anal-
ysis & Design (Entities, Rules, and Group), Implementation (Mapping and LPD), and Test
(Evaluation).

In Figure 5.3 the Requirements discipline (Goals circle in blue) defines the goals that

must be achieved by reasoning with the semantics provided by our model. The Analysis &

Design discipline describes classes of entities, their attributes, how they relate, and what

rules apply to them in our domain (Entities, Rules, and Group circles in green). This def-

inition is independent of the language used to implement the model. The Implementation

discipline maps our design to a specific language that allows uncertainty in ST, which in this

108

case is PR-OWL (Mapping and LPD circles in red). Finally, the Test discipline is responsi-

ble for evaluating if the model developed during the Implementation discipline is behaving

as expected from the rules defined during Analysis & Design and if they achieve the goals

elicited during the Requirements discipline (Evaluation circle in purple). As explained be-

fore, it is possible to test some rules and assumptions even before the implementation. This

is a crucial step to mitigate risk by identifying problems before wasting time in developing

an inappropriate complex model.

The following sections illustrate the UMP-ST process and the POMC cycle through

a case study in procurement fraud detection and prevention and a case study in maritime

domain awareness. The URP-ST is also demonstrated by the use of UnBBayes to implement

the model, to populate the KB, and to perform plausible reasoning.

On the one hand, Section 5.1 will focus on presenting in detail the activities that must

be executed in each discipline in the POMC cycle. On the other hand, Section 5.2 will focus

on presenting how the model evolves through time with every new iteration.

The objective of the first is to present as much detail as possible on the steps necessary

to model a probabilistic ontology using the POMC cycle. The objective of the second is to

show that the UMP-ST process provides a useful approach for allowing the natural evolution

of the model through di↵erent iterations.

5.1 Probabilistic Ontology for Procurement Fraud Detection

and Prevention in Brazil

A major source of corruption is the procurement process. Although laws attempt to ensure

a competitive and fair process, perpetrators find ways to turn the process to their advantage

while appearing to be legitimate. This is why a specialist has didactically structured the

di↵erent kinds of procurement frauds the Brazilian O�ce of the Comptroller General (CGU)

has dealt with in past years.

These di↵erent fraud types are characterized by criteria, such as business owners who

109

work as a front for the company, use of accounting indices that are not common practice,

etc. Indicators have been established to help identify cases of each of these fraud types. For

instance, one principle that must be followed in public procurement is that of competition.

Every public procurement should establish minimum requisites necessary to guarantee the

execution of the contract in order to maximize the number of participating bidders. Never-

theless, it is common to have a fake competition when di↵erent bidders are, in fact, owned

by the same person. This is usually done by having someone as a front for the enterprise,

which is often someone with little or no education.

The ultimate goal of this case study is to structure the specialist knowledge in a way

that an automated system can reason with the evidence in a manner similar to the spe-

cialist. Such an automated system is intended to support specialists and to help train new

specialists, but not to replace them. Initially, a few simple criteria were selected as a proof

of concept. Nevertheless, it is shown that the model can be incrementally updated to incor-

porate new criteria. In this process, it becomes clear that a number of di↵erent sources must

be consulted to come up with the necessary indicators to create new and useful knowledge

for decision makers about the procurements.

Figure 5.4 presents an overview of the procurement fraud detection process. The data

for our case study represent several requests for proposal and auctions that are issued by the

Federal, State and Municipal O�ces (Public Notices - Data). The idea is that the analysts

who work at CGU, already making audits and inspections, accomplish the collection of

information through questionnaires that can specifically be created for the collecting of

indicators for the selected criteria (Information Gathering). These questionnaires can be

created using a system that is already in production at CGU. Once they are answered the

necessary information is going to be available (DB - Information). Hence, UnBBayes, using

the probabilistic ontology designed by experts (Design - UnBBayes), will be able to collect

these millions of items of information and transform them into dozens or hundreds of items

of knowledge. This will be achieved through logic and probabilistic inference. For instance,

procurement announcements, contracts, reports, etc. - a huge amount of data - are analyzed

110

allowing the gathering of relevant relations and properties - a large amount of information.

Then, these relevant relations and properties are used to draw some conclusions about

possible irregularities - a smaller number of items of knowledge (Inference - Knowledge).

This knowledge can be filtered so that only the procurements that show a probability higher

than a threshold, e.g. 20%, are automatically forwarded to the responsible department along

with the inferences about potential fraud and the supporting evidence (Report for Decision

Makers).

Figure 5.4: Procurement fraud detection overview.

5.1.1 Requirements

The objective of the requirements discipline is to define the objectives that must be achieved

by creating a computable representation of domain semantics and reasoning with it. For

this discipline, it is important to define the questions that the model is expected to answer

111

(i.e., the queries to be posed to the system being designed). For each question, a set of

information that might help answer the question (evidence) must be defined.

There are basically two types of requirements: functional and non functional [134,124].

The requirements just described above are called functional requirements. Functional re-

quirements are statements related to what the system should provide, what features it

should have, how it should behave, etc. In our case, functional requirements relate to the

goals, queries, and evidence that pertain to our domain of reasoning. Non functional re-

quirements on the other hand represent constraints on the system as a whole. For instance,

in our use case a non functional requirement could be that the query has to be answered in

less than a minute. Another example is that the posterior probability given as an answer

to a given query has to be either exact or an approximation with an error bound of .5%.

Since it is easier and more straightforward to define non functional requirements, which

define time constraints, error bounds, etc., we will focus on describing how to come up with

the functional requirements in our use case.

In order to understand the requirements for the procurement fraud detection and pre-

vention model, we first have to explain some of the problems encountered when dealing

with public procurements.

One of the principles established by the Law N 8,666/93 is equality among the bid-

ders. This principle prohibits the procurement agent from discriminating among potential

suppliers. However, if the procurement agent is related to the bidder, he/she might feed

information or define new requirements for the procurement in a way that favors the bidder.

Another principle that must be followed in public procurement is that of competition.

Every public procurement should establish minimum requisites necessary to guarantee the

execution of the contract in order to maximize the number of participating bidders. Never-

theless, it is common to have a fake competition when di↵erent bidders are, in fact, owned

by the same person. This is usually done by having someone as a front for the enterprise,

which is often someone with little or no education. Another common tactic is to set up

front enterprises owned by relatives of the owner of the enterprise committing fraud.

112

According to [98] participating in a public procurement can be very expensive and time

consuming. Thus, some firms are unwilling to take part in a process that is not guaranteed

to achieve favorable results. Since this diminishes the number of enterprises participating in

the procurement, collusion among the bidders is more likely to happen. What happens in

Brazil is that a small group of firms regularly participate in procurements of certain goods

and services. When this happens, the competitors in a public procurement take turns

winning the contracts. They stipulate the winning bid, and all other firms bid above that

price. There is no competition, and the government pays a higher price for the contract.

Although collusion is not an easy thing to prove, it is reasonable to assume that collusion

is enabled by some kind of relationship between the enterprises.

All firms in Brazil have a registration number, called CGC, which stands for General

List of Contributors. When a firm is suspended from procuring with the public adminis-

tration, its CGC number is used to inform all other public agencies that this firm should

not participate in public procurements. However, the firm can simply close its business and

open a new one using a di↵erent CGC. Thus the firm that should not be able to participate

in public procurements is now allowed, since it now has a di↵erent number associated to it.

Unfortunately, the Commercial Code permits this change of CGC number.

One other problem is that public procurement is quite complex and may involve large

sums of money. Therefore, the members that form the committee of the procurement

must not only be prepared, but also have a clean history (no criminal nor administrative

conviction) in order to maximize morality, one of the ethical principles that federal, state,

municipal and district government should all adopt.

Having explained that, in our fraud detection and prevention in the procurements do-

main we have the following set of goals/queries/evidences:

1. Identify whether a given procurement should be inspected and/or audited (i.e. evi-

dence suggests further analysis is needed);

(a) Is there any relation between the committee and the enterprises that participated

113

in the procurement?

i. Look for member and responsible person of an enterprise who are related

(mother, father, brother, or sister);

ii. Look for member and responsible person of an enterprise who live at the

same address.

(b) Is the responsible person of the winner enterprise of the procurement a front?

i. Look for value of the contract related to this procurement;

ii. Look for his/her education degree;

iii. Look for his/her annual income.

(c) Was the responsible person of the winner enterprise of the procurement respon-

sible for an enterprise that has been suspended from procuring with the public

administration?

i. Look for this information in the General List of Contributors (CGC)

database.

(d) Was competition compromised?

i. Look for bidders who are related (mother, father, brother, or sister).

2. Identify whether the committee of a given procurement should be changed.

(a) Is there any member of committee who does not have a clean history?

i. Look for criminal history;

ii. Look for administrative investigations.

(b) Is there any relation between members of the committee and the enterprises that

participated in previous procurements?

i. Look for member and responsible person of an enterprise who are relatives

(mother, father, brother, or sister);

ii. Look for member and responsible person of an enterprise who live at the

same address.

114

Another important aspect of the Requirements discipline is defining traceability of re-

quirements. Gotel and Finkelstein [51] define requirements traceability as:

Requirements traceability refers to the ability to describe and follow the life

of a requirement, in both forwards and backwards direction.

A common tool for defining requirements traceability is the specification tree, which

is the arrangement of requirements in such a way that each requirement is linked to its

“parent” requirement in the higher specification. This is exactly the way we have defined

the requirements for our procurement model. Every evidence is linked to its higher level

query, which is linked to its higher level goal. Here we are not only defining the requirements,

but also defining their traceability.

However, requirements traceability (RT) is not only about defining links between re-

quirements. In fact, RT also provides the link between work products of other disciplines,

like the rules in the Analysis & Design and MFrags in the Implementation, and the goals,

queries, and evidence elicited in the Requirements discipline. This kind of link makes RT

specially useful for validation and management of change.

This kind of link between work products of di↵erent disciplines is typically done via

a Requirements Traceability Matrix (RTM) [134, 124]. Table 5.1 presents a RTM with

the traceability between the requirements defined in this Section for the fraud detection

model. Notice that this matrix represents exactly the same thing as the specification tree

defined previously. However, when mapping the work product of other disciplines to the

requirements, in most cases, it will not be possible to use a specification tree, but it will

always be possible to use RTM.

5.1.2 Analysis & Design

Once we have defined our goals and described how to achieve them, it is time to start

modeling the entities, their attributes, relationships, and rules to make that happen. This

is the purpose of the Analysis & Design discipline.

115

Ta
bl

e
5.

1:
R

eq
ui

re
m

en
ts

Tr
ac

ea
bi

lit
y

M
at

ri
x

fo
r

th
e

re
qu

ir
em

en
ts

of
th

e
fr

au
d

de
te

ct
io

n
m

od
el

.

ID
1

1a
1a

i
1a

ii
1b

1b
i

1b
ii

1b
iii

1c
1c

i
1d

1d
i

2
2a

2a
i

2a
ii

2b
2b

i
2b

ii
1

X
1a

X
X

1a
i

X
X

X
1a

ii
X

X
X

1b
X

X
1b

i
X

X
X

1b
ii

X
X

X
1b

iii
X

X
X

1c
X

X
1c

i
X

X
X

1d
X

X
1d

i
X

X
X

2
X

2a
X

X
2a

i
X

X
X

2a
ii

X
X

X
2b

X
X

2b
i

X
X

X
2b

ii
X

X
X

116

The major objective of this discipline is to define the semantics of our model. In fact,

most of our semantics can be defined in normal ontologies, including the deterministic rules

that the concepts described in our model must obey. Since there are whole books describing

how to design such ontologies, and our main concern is on the uncertain part of the ontology,

we will not cover these methods in this Section. For more information see [7, 50,101,102].

Nevertheless, we do need a starting point in order to design our probabilistic ontology.

As a matter of fact, one good way to start modeling these properties is to use UML as

described in Section 2.1. However, as we have seen, UML does not support complex rule

definitions. So we will just document them separately to remind us of the rules that must

be described when implementing our model in PR-OWL.

Figure 5.5 depicts a simplified design of our domain requirements. A Person has a name,

a mother and a father (also Person). Every Person has a unique identification that in

Brazil is called CPF. A Person also has an Education and livesAt a certain Address. In

addition, everyone is obliged to file his/her TaxInfo every year, including his/her annual-

Income. These entities can be grouped as Personal Information. A PublicServant is

a Person who worksFor a PublicAgency, which is a Government Agency. Every public

Procurement is owed by a PublicAgency, has a committee formed by a group of Public-

Servants, and has a group of participants, which are Enterprises. One of these will be

the winner of the Procurement. Eventually, the winner of the Procurement will receive a

Contract of some value with the PublicAgency owner of the Procurement. The entities

just described can be grouped as Procurement Information. Every Enterprise has at

least one Person that is responsible for its legal acts.

117

Figure 5.5: Entities, their attributes, and relations for the procurement model.

An Enterprise also has an identification number, the General List of Contributors CGC,

which can be used to inform that this Enterprise is suspended from procuring with the

public administration, isSuspended. These are grouped as the Enterprise Information.

We also have AdminstrativeInvestigation, which has information about investigations

that involves one or more PublicServer. Its finalReport, the JudgmentAdministra-

tiveReport, contains information about the penalty applied, if any. These entities form

the Administrative Judgment Information. Finally we have the Criminal Judgment

Information group that describes the CriminalInvestigation that involves a Person,

with its finalReport, the JudgmentCriminalReport, which has information about the

verdict.

118

Ta
bl

e
5.

2:
R

eq
ui

re
m

en
ts

Tr
ac

ea
bi

lit
y

M
at

ri
x

fo
r

th
e

ru
le

s
of

th
e

fr
au

d
de

te
ct

io
n

m
od

el
.

ID
1

1a
1a

i
1a

ii
1b

1b
i

1b
ii

1b
iii

1c
1c

i
1d

1d
i

2
2a

2a
i

2a
ii

2b
2b

i
2b

ii
1

X
X

X
X

2
X

X
X

X
3

X
X

X
X

X
X

4
X

X
X

5
X

X
X

6
X

X
X

X
X

X
X

X
X

X
X

X
7

X
X

X
X

X
8

X
X

X
X

9
X

X
X

X
X

X
X

X

119

Besides the cardinality and uniqueness rules defined in the explanation above about the

entities depicted in Figure 5.5, the probabilistic rules for our model include:

1. If a member of the committee has a relative (mother, father, brother, or sister) re-

sponsible for a bidder in the procurement, then it is more likely that a relationship

exists between the committee and the enterprises, which inhibits competition.

2. If a member of the committee lives at the same address as a person responsible for

a bidder in the procurement, then it is more likely that a relationship exists between

the committee and the enterprises, which lowers competition.

3. If a contract of high value related to a procurement has a responsible person of the

winner enterprise with low education or low annual income, then this person is likely

to be a front for the firm, which lowers competition.

4. If the responsible person of the winner enterprise is also responsible for another enter-

prise that has its CGC suspended for procuring with the public administration, then

this procurement is more likely to need further investigation.

5. If the responsible people for the bidders in the procurement are related to each other,

then a competition is more likely to have been compromised.

6. If 1, 2, 3, or 5, then the procurement is more likely to require further investigation.

7. If a member of the committee has been convicted of a crime or has been penalized

administratively, then he/she does not have a clean history. If he/she was recently

investigated, then it is likely that he/she does not have a clean history.

8. If the relation defined in 1 and 2 is found in previous procurements, then it is more

likely that there will be a relation between this committee and future bidders.

9. If 7 or 8, then it is more likely that the committee needs to be changed.

Once we have our rules defined, it is important to keep track of their traceability to the

requirements. Although this is a step of the Requirements discipline, we will present it here.

120

In fact, when completing every discipline it is important to go back to the Requirements

discipline to expand the RTM matrix.

Table 5.2 presents the traceability between the rules defined in the Analysis & Design

stage and the goals, queries, and evidence defined in the Requirements stage. I.e., this

mapping defines which requirements the rules are realizing.

5.1.3 Implementation

Once we have finished our Analysis & Design, it is time to start implementing our model

in a specific language. This Section describes how to model procurement fraud detection

and prevention in PR-OWL using UnBBayes.

The first thing to do is to start mapping the entities, their attributes, and relations

to PR-OWL, which uses essentially MEBN terms. This discipline is di↵erent from the

previous ones, since it depends on the language/formalism being used. In this Section I will

highlight the di↵erence between implementing the fraud detection probabilistic ontology

using PR-OWL 1 and PR-OWL 2.

PR-OWL 1, although with a few limitations, already has a mature implementation in

UnBBayes (the first version was made publicly available in February 2008). PR-OWL 2 on

the other hand is still under development [88] and the current working version has a lot of

limitations and is just a proof-of-concept6. Therefore, the fraud detection probabilistic on-

tology will not be fully implemented in PR-OWL 2, but it will be implemented in PR-OWL

1. Nevertheless, once the final version of PR-OWL 2 is available it should be straightfor-

ward to migrate this PO to PR-OWL 2. Notice that the main objective of this Chapter is

to describe the UMP-ST process and to highlight the di↵erences between PR-OWL 1 and

PR-OWL 2.

In PR-OWL 1, it is often a good idea to start mapping the entities. There is no need to

map all entities in our model to an entity in PR-OWL. In fact, in our model we will make

many simplifications. One of them is due to a limitation in UnBBayes current version, which
6PR-OWL 2 is being developed by the Group of Artificial Intelligence (GIA) at the University of Braśılia,

Brazil.

121

is the lack of support for a type hierarchy. Therefore, we will not have the PublicServant

entity and we will assume that a Person might work for a PublicAgency. We will also

assume that every Person and Enterprise in our KB is uniquely identified by its name,

so we will not consider, in this simplified example, the CPF and CGC entities. Figure 5.6(a)

presents the entities implemented in our PR-OWL ontology using UnBBayes. For more

details about defining entities in UnBBayes see [20].

(a) Entities implemented in PR-OWL 1 us-
ing UnBBayes.

(b) Entities implemented in OWL for use in
PR-OWl 2 using Protégé.

Figure 5.6: Entities for the procurement domain.

In PR-OWL 2, on the other hand, it is not necessary to map these entities. In fact, the

entities are defined as classes in a regular ontology using OWL. Then PR-OWL 2 simply

makes use of them. As previously explained, it is not the objective of the UMP-ST process

to explain how to design standard deterministic ontologies. However, the Analysis & Design

122

discipline helps with a starting point for defining this ontology. The class hierarchy presented

in Figure 5.6(b) was derived from the UML diagram created during the Analysis & Design

stage presented in Figure 5.5.

Once we have our entities defined, we consider characteristics that may be uncertain.

Uncertainty is represented in MEBN by defining random variables (RVs). On the one hand,

to define a RV in PR-OWL 1 using UnBBayes, we first define its home MFrag. Grouping

the RVs into MFrags is done by examining the grouping created during Analysis & Design.

On the other hand, in PR-OWL 2 RVs are independent of MFrag and are defined globally

by defining its arguments, mapping to OWL, and default distributions.

Typically, a RV represents an attribute or a relation from our designed model in Anal-

ysis & Design. For instance, the RV livesAt(person) maps the relation livesAt in our

designed model. As it is a functional relation, livesAt relates a Person to an Address.

Hence, the possible values (or states) of this RV are instances of Address.

It is important to notice that although we followed the best practice of having the same

domain and range on both OWL terms (e.g. livesAt) and PR-OWL 1 random variables

(e.g. livesAt(person)), there is nothing in the language that guarantees these manual

mappings will be kept the same throughout the life cycle of the model. Moreover, since

there is no formal link between these terms, it is impossible for reasoners to identify that

these terms are even linked. At best, it could only “guess” they are the same, since they

have similar syntax (e.g. predicate livesAt has a similar name to the random variable

livesAt(person)), which is, at best, contradictory for a language that is designed to

convey semantics of terms and relations.

Chapter 4 described how PR-OWL 2 formalizes the mapping between RVs and OWL

properties. In the proof-of-concept PR-OWL 2 plugin for UnBBayes, from now on called

PR-OWL 2 plugin [88], a RV is automatically created and and its mapping automatically

defined by dragging the OWL property and dropping it in the MFrag where it will be used

as a resident node, as shown in Figure 5.7.

123

Figure 5.7: Creating a RV in PR-OWL 2 plugin from its OWL property by drag-and-drop.

We can also avoid explicitly representing some entities, by simply defining discrete out-

puts. In our implementation, we only need to know the education level of a Person, which

is either noEducation, middleSchool, highSchool, undergraduate, or graduate. These

are the states of the RV hasEducationLevel(person), therefore, in PR-OWL 1, there is

no need to define the entity EducationLevel, since no actual mapping will exist between

the categorical RV and the OWL property hasEducationLevel. However, in PR-OWL 2,

in order to represent categorical values, we would create a class EducationLevel with the

oneOf construct from OWL. This construct allows us to define a set of predefined possible

values for that class, which is exactly what we need.

Because the current version of UnBBayes-MEBN does not support continuous RVs, we

must define a discretization for numerical attributes. For example, the attribute value

of the Contract entity from our designed model is continuous, since it represents some

float value in a specific Currency. However, we can discretize it by defining com-

mon intervals, as lower than 10,000.00, between 10,000.01 and 100,000.00, between

100,000.01 and 500,000.00, between 500,000.01 and 1,000,000.00, and greater

124

than 1,000,000.01, which will be the states of the resident node valueOf(procurement).

This is the case for both implementations of PR-OWL 1 and PR-OWL 2 in UnBBayes.

The di↵erence is that in future versions of UnBBayes, which will support continuous RVs,

PR-OWL 1 will not be able to use data types such as float, while PR-OWL 2 will, since

the latter uses OWL’s types instead of defining its own types as the former does.

Once all resident RVs are created, their relations can be defined by analyzing dependence

between nodes. One good way to look for dependence is by looking at the rules defined

in our model. For instance, rule 3 indicates that there is a dependence between val-

ueOf(procurement), hasEducationLevel(person), and isFront(person, enterprise).

The MFrags implemented in order to address all the rules defined in the Analysis &

Design are:

1. Personal Information

2. Procurement Information

3. Enterprise Information

4. Front of Enterprise

5. Exists Front in Enterprise

6. Related Participant Enterprises

7. Member Related to Participant

8. Competition Compromised

9. Owns Suspended Enterprise

10. Judgement History

11. Related to Previous Participants

12. Suspicious Committee

125

F
ig

ur
e

5.
8:

P
ro

ba
bi

lis
ti

c
on

to
lo

gy
fo

r
fr

au
d

de
te

ct
io

n
an

d
pr

ev
en

ti
on

in
pu

bl
ic

pr
oc

ur
em

en
ts

.

126

13. Suspicious Procurement

Table 5.3: Requirements Traceability Matrix for the MFrags of the fraud detection model.

ID 1 2 3 4 5 6 7 8 9

1 X X X X X X X

2 X X X X X X X X X

3 X X X X X X X X

4 X X

5 X X

6 X X

7 X X X X X

8 X X X X X X X

9 X

10 X X

11 X

12 X X

13 X X X X X X X X X

Table 5.3 presents the traceability between the MFrags defined in the Implementation

stage and the rules defined in the Analysis & Design stage. This mapping, together with

the mapping of the rules to the requirements presented in Table 5.2 provides the mapping

that defines which requirements the MFrags are realizing.

Figure 5.8 presents an MTheory, in PR-OWL 1, that represents the final probabilistic

ontology for the procurement fraud detection and prevention model. This MTheory is

composed of nine MFrags. In each MFrag, the resident RVs are shown as yellow rounded

rectangles; the input RVs are shown as gray trapezoids; the context RVs are shown as green

127

pentagons. The two main goals described in our requirements are defined in the Suspicious

Procurement and Suspicious Committee MFrags. A more sophisticated design to model

whether to do further investigation or whether to change the committee would define a

utility function and use expected utility to make the decision. Future versions of UnBBayes

will support Multi-Entity Influence Diagrams [27].

The final step in constructing a probabilistic ontology in UnBBayes is to define the local

probability distribution (LPD) for all resident nodes (in PR-OWL 2 the default distribution

is defined only once on the RV itself). Figure 5.9 presents a LPD for the resident node

isSuspiciousProcurement(procurement), which is the main question we need to answer

in order to achieve one of the main goals in our model. This distribution follows UnBBayes-

MEBN expressive grammar for defining LPDs. For more information see [16,19].

Appendix B Section B.1 presents the details and explanations of all MFrags and all

resident nodes and their respective LPDs of the probabilistic ontology discussed in this

Section.

Figure 5.9: LPD for node isSuspiciousProcurement(procurement).

128

5.1.4 Test

In most modeling methodologies, test plays an essential role. This is no di↵erent in the

UMP-ST methodology. As Laskey and Mahoney [81] point out, test should not just be for

showcase and to demonstrate that the model works. The Test discipline goal is to find flaws

and areas for improvement in the model.

Before we start describing the activities in the Test discipline, it is important to under-

stand the di↵erent types of evaluation that need to be done. The literature distinguishes

two types of evaluation, verification and validation [6]. On the one hand, verification is

concerned with delivering all the functionality promised to the customer. This usually in-

volves reviewing requirements, documentation, design, and code. Verification is often done

through inspections and by following checklists. On the other hand, validation is concerned

with the correct behavior of the system. Validation is the actual testing of the system and

it is done after verification.

A common slogan that summarizes the main di↵erence between verification and valida-

tion is that verification tests whether the system was built right; validation tests whether

we built the right system.

For instance, in the model we have been describing in this Section we would like to

verify that all queries covered by the requirement are indeed being answered in less than

a minute and that the posterior probability given as an answer to a given query is either

exact or has an approximation with an error bound of .5% or less. These are non-functional

requirements described during our Requirements stage in Subsection 5.1.1.

Although verification is an important and necessary evaluation, I will focus on describing

how to validate our model. Laskey and Mahoney [81] present three types of validation:

elicitation review, importance analysis, and case-based evaluation.

Elicitation review is related to reviewing the model documentation, analysing if all the

requirements were addressed on the final model, making sure all the rules defined during

the Analysis & Design stage were implemented, validating the semantics of the concepts

described by the model, etc. This is an important step towards achieving consistency in

129

our model, especially if it was designed by more than one expert.

A good way to verify if all the requirements were addressed in the final implementation

of the model is to look at the RTM matrices. By looking at the RTM matrix for the MFrags

implemented in our model we can verify that all the rules defined during Analysis & Design

were covered. Since the RTM matrix of the rules defined during Analysis & Design covered

all the requirements, then we can infer that all the requirements were implemented in our

model.

Importance analysis measures the strength of a link between nodes using some kind of

sensitivity analysis method [75,96]. According to [81], “importance analysis for a given vari-

able (called focus variable) measures the impact on the focus variable’s belief of obtaining

evidence about each of a set of other variables (the evidence variables).”

In this section I will focus on case-based evaluation, which is defining di↵erent scenarios

to test our model. One type of case-based evaluation is case-based unit testing. In case-

based unit testing we want to test the behavior of part of the model, more specifically,

verifying how the focus variable behaves with di↵erent set of evidence. In the case of PR-

OWL, we can analyze the behavior of the random variables of interest given evidence per

MFrag. This MFrag testing is important to capture local consistency of the model.

As an example of unit testing, I demonstrate how to define di↵erent scenarios to test

the JudgmentHistory MFrag. Essentially, we want to verify how the query hasCleanHis-

tory(person) will behave in light of di↵erent set of evidence for a person’s criminal and

administrative history.

130

. . .

Figure 5.10: Results of unit testing for the JudgmentHistory MFrag.

Notice that we do not show all possible combinations of the states for each node

131

in Figure 5.10, since their behavior is similar in the sense that stating that hasCrim-

inalHistory(person1) = Convicted and hasAdministrativeHistory(person1) = In-

vestigated is the same thing as stating that hasCriminalHistory(person1) = Investi-

gated and hasAdministrativeHistory(person1) = Convicted, and so on. The impor-

tant thing to do is to try to cover as much as possible and to analyze the results by verifying

if the posterior probabilities behave as expected. In our case, the posterior probabilities

are consistent with the expected result as defined by the expert. In this MFrag the focus

variable is the child, however, in other MFrags the focus variable might the parent and thus

we would want to evaluate the behavior of a parent node given evidence on the children,

which is the opposite of what was done here.

The other type of case-based evaluation is concerned with the behavior of the model as a

whole. As such, I use it as an important type of integration testing. In the case of PR-OWL,

we can define scenarios with evidence that are represented in di↵erent MFrags. So, when

we ask a query, the SSBN construction will instantiate di↵erent parts of the model, which

helps us validate how the model works as a whole, and not just each part independently.

This validation is important to capture global consistency of the model.

It is important to try out di↵erent scenarios in order to capture the nuances of the model.

In fact, it is a good practice to design the scenarios in order to cover the range of require-

ments the model must satisfy [134, 124]. Although it is impossible to cover every scenario

we might encounter, we should aim for good coverage, and especially look for important

”edge cases”. In order to illustrate this approach, let’s define three di↵erent scenarios. The

first one concerns a regular procurement with no evidence to support the hypothesis of a

suspicious procurement or committee. The second one has conflicting evidence in the sense

that some supports the hypothesis of having a suspicious procurement or committee but

some does not. Finally, on the third scenario there is overwhelming evidence supporting

the hypothesis of a suspicious procurement or committee. Nevertheless, a serious and more

comprehensive evaluation of the model would have more than just three scenarios.

When defining a scenario, it is important to define the hypothesis being tested and what

132

is the expected result, besides providing the evidence which will be used. In this use case

I was the subject matter expert, since I work for the Brazilian O�ce of the Comptroller

General (CGU), which is the Government Agency responsible for supervising and auditing

projects which involve federal money.

In the first scenario we have the following:

1. Hypothesis being tested

(a) isSuspiciousProcurement(procurement)

(b) isSuspiciousCommittee(procurement)

2. Expected result

(a) Low probability that isSuspiciousProcurement(procurement1) = true

(b) Low probability that isSuspiciousCommittee(procurement1) = true

3. Evidence

(a) hasAdministrativeHistory(member1) = NeverInvestigated

(b) hasCriminalHistory(member2) = NeverInvestigated

(c) hasProcurementOwner(procurement1) = agency1

(d) isMemberOfCommittee(member1, procurement1) = true

(e) isMemberOfCommittee(member2, procurement1) = true

(f) isMemberOfCommittee(member3, procurement1) = true

(g) isParticipantIn(enterprise1, procurement1) = true

(h) isParticipantIn(enterprise2, procurement1) = true

(i) isParticipantIn(enterprise3, procurement1) = true

(j) isProcurementFinished(procurement1) = false

(k) isResponsibleFor(person1, enterprise1) = true

133

(l) isResponsibleFor(person2, enterprise2) = true

(m) isResponsibleFor(person3, enterprise3) = true

Figure 5.11 presents part of the SSBN network generated from scenario 1 and as expected

the probability of both isSuspiciousProcurement(procurement1) = true and isSuspi-

ciousCommittee(procurement1) = true are low, 2.35% and 2.33%, respectively.

Figure 5.11: Part of the SSBN generated for the first scenario.

In the second scenario we have the following:

1. Hypothesis being tested

(a) isSuspiciousProcurement(procurement)

(b) isSuspiciousCommittee(procurement)

2. Expected result

(a) Probability that isSuspiciousProcurement(procurement1) = true between

10% and 50%

(b) Probability that isSuspiciousCommittee(procurement1) = true between

10% and 50%

134

3. Evidence (in italic we have the new evidence compared to scenario 1)

(a) hasAdministrativeHistory(member1) = Investigated

(b) hasAdministrativeHistory(member1) = NeverInvestigated

(c) hasCriminalHistory(member2) = NeverInvestigated

(d) hasProcurementOwner(procurement1) = agency1

(e) isMemberOfCommittee(member1, procurement1) = true

(f) isMemberOfCommittee(member2, procurement1) = true

(g) isMemberOfCommittee(member3, procurement1) = true

(h) isParticipantIn(enterprise1, procurement1) = true

(i) isParticipantIn(enterprise2, procurement1) = true

(j) isParticipantIn(enterprise3, procurement1) = true

(k) isProcurementFinished(procurement1) = false

(l) isResponsibleFor(person1, enterprise1) = true

(m) isResponsibleFor(person2, enterprise2) = true

(n) isResponsibleFor(person3, enterprise3) = true

Figure 5.12 presents part of the SSBN network generated from scenario 2 and as expected

the probability of both isSuspiciousProcurement(procurement1) = true and isSuspi-

ciousCommittee(procurement1) = true are 20.82% and 28.95%, respectively.

135

Figure 5.12: Part of the SSBN generated for the second scenario.

In the third scenario we have the following:

1. Hypothesis being tested

(a) isSuspiciousProcurement(procurement)

(b) isSuspiciousCommittee(procurement)

2. Expected result

(a) Probability that isSuspiciousProcurement(procurement1) = true greater

than 50%

(b) Probability that isSuspiciousCommittee(procurement1) = true between

10% and 50%

3. Evidence (in italic we have the new evidence compared to scenario 2)

(a) livesAtSameAddress(person1, person3)

(b) livesAtSameAddress(person2, member3)

(c) hasAdministrativeHistory(member1) = Investigated

(d) hasAdministrativeHistory(member1) = NeverInvestigated

136

(e) hasCriminalHistory(member2) = NeverInvestigated

(f) hasProcurementOwner(procurement1) = agency1

(g) isMemberOfCommittee(member1, procurement1) = true

(h) isMemberOfCommittee(member2, procurement1) = true

(i) isMemberOfCommittee(member3, procurement1) = true

(j) isParticipantIn(enterprise1, procurement1) = true

(k) isParticipantIn(enterprise2, procurement1) = true

(l) isParticipantIn(enterprise3, procurement1) = true

(m) isProcurementFinished(procurement1) = false

(n) isResponsibleFor(person1, enterprise1) = true

(o) isResponsibleFor(person2, enterprise2) = true

(p) isResponsibleFor(person3, enterprise3) = true

Figure 5.13 presents part of the SSBN network generated from scenario 3 and as expected

the probability of both isSuspiciousProcurement(procurement1) = true and isSuspi-

ciousCommittee(procurement1) = true are 60.08% and 28.95%, respectively.

137

Figure 5.13: Part of the SSBN generated for the third scenario.

5.2 Probabilistic Ontology for Maritime Domain Awareness

Maritime Domain Awareness (MDA) involves the ability to automatically integrate infor-

mation from multiple sources in a complex and evolving scenario to produce a dynamic,

comprehensive, and accurate picture of the naval operations environment. The emphasis on

net-centric operations and the shift to asymmetric warfare have added an additional level

of complexity and technical challenge to automated information integration and predictive

situation assessment. A probabilistic ontology (PO) is a promising tool to address this

challenge. The PO for Maritime Domain Awareness (MDA) described in this Section was

presented in [17,18] and is part of the PROGNOS project [32,33].

PROGNOS (PRobabilistic OntoloGies for Net-centric Operation Systems) is a naval

predictive situational awareness system devised to work within the context of U.S. Navy’s

FORCENet. The system uses the UnBBayes-MEBN framework, which implements a MEBN

reasoner capable of saving MTheories in PR-OWL format.

The focus of this Section is to highlight the key role iterations play in incrementally

expanding the model during its lifecycle. In this Section I will not present as much detail

138

in each discipline as I did in Section 5.1. Instead I will highlight how we can leverage the

UMP-ST process and PR-OWL’s modularity in order to minimize change in the existing

model as we add new requirements in new iterations.

The PROGNOS MDA PO was created using the Uncertainty Model for Semantic Tech-

nologies (UMP-ST) and the Probabilistic Ontology Modeling Cycle (POMC) with the sup-

port of the stakeholders (MEBN and PR-OWL experts and subject matter experts, who are

retired o�cers from US Navy and US Coast Guard, Richard Haberlin and Michael Lehocky,

respectively). The probabilistic ontology developed so far has passed through three itera-

tions. The first iteration consists of a simple model to identify whether a ship is of interest.

The second iteration expanded the model to provide clarification of the reasons behind

declaring a ship of interest. The third iteration focused on detecting an individual crew

member’s terrorist a�liation given his close relations, group associations, communications,

and background influences.

5.2.1 First Iteration

Requirements

The original model consists of the following set of goal/query/evidence:

1. Identify whether a ship is of interest, i.e., it seems to be suspicious in any way.

(a) Does the ship have a terrorist crew member?

i. Verify if a crew member is related to any terrorist;

ii. Verify if a crew member is associated with any terrorist organization.

(b) Is the ship using an unusual route?

i. Verify if there is a report that the ship is using an unusual route;

ii. Verify if there is a report that the ship is meeting some other ship for no

apparent reason.

(c) Does the ship seem to exhibit evasive behavior?

139

i. Verify if an electronic countermeasure (ECM) was identified by a navy ship;

ii. Verify if the ship has a responsive radio and automatic identification system

(AIS).

Analysis & Design

Once we have defined our goals and described how to achieve them, it is time to start

modeling the entities, their attributes, relationships, and rules to make that happen. This

is the purpose of the Analysis & Design discipline.

Figure 5.14 depicts a simplified design of our domain requirements. A Ship is a ship of

interest, isOfInterest, if it represents some kind of threat. A Ship has a crew, which is

represented by hasCrewmember and the inverse relation isCrewmemberOf. It is assumed that

a ship represents some kind of threat if and only if one of its crew members is a Terrorist

(subclass of Person).

The social network information available determines that a Person might be related

to another Person by isRelatedTo. Moreover, a Person might be a member of an Or-

ganization, represented by the isMemberOf and the inverse hasMember relations. An

Organization might be a TerroristOrganization (subclass of Organization). It is also

assumed that a Person related to a Terrorist is more likely to be a Terrorist and an

Organization that has a Terrorist member is more likely to be a TerroristOrganiza-

tion.

This model is simplified in the sense that it represents a screenshot in time of the domain.

In other words, there is only one possible crew for a given Ship and a Person can only be

a crew member of a unique Ship. Following the same rationale, a Ship can only have one

possible Position, represented by hasPosition.

140

Figure 5.14: Entities, their attributes, and relations for the MDA model after the first

iteration.

The Position of a Ship is usually consistent with its Route. A Route has a specific origin

and destination Position, represented by hasOrigin and hasDestination, respectively. If

the Ship is following the usual route from its origin to its destination, then its Route is said

to be a UsualRoute, otherwise, if the Ship is going to places that are not consistent with

the expected route (safest/shortest distance from origin to destination), then its Route is

said to be an UnusualRoute. Furthermore, usually ships try to avoid getting too close to

each other, therefore, if two of more ships get too close together, it is said that they are

Meeting in a certain Position, represented by hasPosition. The ships participating in

this Meeting are represented by hasParticipant, which maps a Meeting to two or more

ships (Ship). If two or more ships are meeting, then it is more likely that they doing some

141

illicit transaction on the ocean, therefore, they will probably meet at an unusual Position,

which means that they are on an UnusualRoute. One example illustrating this idea is that

a ship carrying Weapons of Mass Destruction (WMD) might want to pass its dangerous

cargo to one or more smaller ships in order to increase the chances of infiltrating the coast

with the WMD.

As for the electronic equipment described in this model, ElectronicEquipment, a Ship

can have an Automatic Identification System (AIS), represented by hasAIS, which is used

for identifying and locating vessels by electronically exchanging data with other nearby

ships and Vessel Tra�c Services (VTS) stations. Moreover, a Ship usually has at least

one Radar, represented by hasRadar, with a specific range, defined by hasRange. The

range is defined in this model by a float number, however, in a more realistic and detailed

model this should be a measure of distance, i.e., a class by itself with value and unit of

measure. AIS and Radar are subclasses of EletronicEquipment and as such, they can be

responsive, represented by isReponsive, which entails that they are working, represented

by isWorking, and turned on.

A Ship might have di↵erent behaviors (Behavior). A Ship might deploy an Electronic

Countermeasure (ECM), represented by hasDeployed. Besides that, a di↵erent Ship might

detect an ECM, represented by hasDetected, although it does not necessarily know which

Ship deployed it. To be able to detect an ECM, the ship that deployed the ECM has to

be in the Radar range of the Ship that detects it. An ECM is a subsection of electronic

warfare, which includes any sort of electrical or electronic device designed to trick or deceive

radar, sonar, or other detection systems. It may be used both o↵ensively and defensively

in any method to deny targeting information to an enemy. A Ship that has deployed an

ECM is said to have exhibited an EvasiveBehavior. Furthermore, if an ElectronicE-

quipment is working but is not responsive, then the Ship is also said to have exhibited an

EvasiveBehavior. In all other cases, the Ship is said to have NormalBehavior. As shown,

EvasiveBehavior and NormalBehavior are subclasses of Behavior.

Besides the cardinality and uniqueness rules defined in the explanation above about the

142

entities depicted in Figure 5.14, the probabilistic rules for our model include:

1. A ship is of interest if and only if it has a terrorist crew member;

2. If a crew member is related to a terrorist, then it is more likely that he is also a

terrorist;

3. If a crew member is a member of a terrorist organization, then it is more likely that

he is a terrorist;

4. If an organization has a terrorist member, it is more likely that it is a terrorist orga-

nization;

5. A ship of interest is more likely to have an unusual route;

6. A ship of interest is more likely to meet other ships for trading illicit cargo;

7. A ship that meets other ships to trade illicit cargo is more likely to have an unusual

route;

8. A ship of interest is more likely to have an evasive behavior;

9. A ship with evasive behavior is more likely to have non responsive electronic equip-

ment;

10. A ship with evasive behavior is more likely to deploy an ECM;

11. A ship might have non responsive electronic equipment due to working problems;

12. A ship that is within radar range of a ship that deployed an ECM might be able to

detect the ECM, but not who deployed it.

Implementation

Once we have finished our Analysis & Design, it is time to start implementing our model in

a specific language. In this project we implement our model in PR-OWL using UnBBayes.

143

F
ig

ur
e

5.
15

:
M

T
he

or
y

cr
ea

te
d

in
fir

st
it

er
at

io
n.

144

The final result of this initial iteration is the PO depicted in Figure 5.15. There, the

hypotheses related to the identification of a terrorist crew member are presented in the Has

Terrorist Crew, Terrorist Person, and Ship Characteristics MFrags. The hypothe-

ses related to the identification of unusual routes are presented on the Unusual Route and

Meeting MFrags. Finally, the hypotheses related to identification of evasive behavior are

shown in the Evasive Behavior, Electronics Status, and Radar MFrags.

Appendix B Subsection B.2.1 presents the details and explanations of all MFrags and

all resident nodes and their respective LPDs of the probabilistic ontology discussed in this

Subsection.

Test

Although I have described many di↵erent types of evaluation and tests we can perform in

our model in Subsection 5.1.4, this iteration will focus on performing integration test based

on case-based evaluation.

Figure 5.16: SSBN generated for scenario 1.

I will illustrate 5 di↵erent scenarios by increasing not only the complexity of the gener-

ated model, but also the probability that ship1 is of interest. These increases are due to

145

new evidence that is available in every new scenario, which supports the hypothesis that

ship1 is of interest.

In scenario 1, the only information available is that person1 is a crew member of ship1

and that person1 is related to at least one terrorist. Figure 5.16 shows that there is a

70.03% probability of ship1 being of interest, which is consistent with the fact that one of

its crew members might be a terrorist.

In scenario 2, besides having the information available from scenario 1, it is also known

that ship1 met ship2. Figure 5.17 shows the probability of ship1 being of interest has

increased to 89.41%, which is consistent with the new supporting evidence that ship1 met

ship2.

Figure 5.17: SSBN generated for scenario 2.

146

In scenario 3, besides having the information available from scenario 2, it is also known

that ship1 has an unusual route. Figure 5.18 shows the probability of ship1 being of

interest has increased to 97.19%, which is consistent with the new supporting evidence that

ship1 is not going to its destination using a normal route.

Figure 5.18: SSBN generated for scenario 3.

In scenario 4, besides having the information available from scenario 3, it is also known

that navyShip has detected an ECM. Figure 5.19 shows the probability of ship1 being of

interest has increased to 99.97%, which is consistent with the new supporting evidence that

ship1 is probably the ship that deployed the ECM. It is important to notice that there

are only two ships that could deploy the ECM in this scenario, which are the ships within

range of navyShips radar (ship1 and ship2). From the other evidence that supports the

fact that ship1 is most likely a ship of interest, it becomes more likely that ship1 is the

147

one that deployed the ECM. That is why the probability that ship2 having deployed the

ECM is so low (due to explaining away).

Figure 5.19: SSBN generated for scenario 4.

In scenario 5, besides having the information available from scenario 4, it is also known

that ship1 does not have a responsive radio nor a responsive AIS. Figure 5.20 shows that

the probability of ship1 being of interest is 100.00%.

148

Figure 5.20: SSBN generated for scenario 5.

5.2.2 Second Iteration

Once the initial model was built and tested, the second iteration shifted focus to under-

standing the reasons for classifying a ship’s behavior as suspicious. The approach was to

define possible terrorist plans that might result in specific behaviors. At this stage, two

terrorist plans were taken into consideration: exchange illicit cargo (e.g., explosives) and

bomb a port using a suicide ship. Another distinction from the original model is that the

behavior depends not only on the plan being executed, but also on the type of the ship.

In addition, there are now two reasons why a ship might be executing a terrorist plan: it

either has a terrorist crew member (the only option in the original model) or the ship was

hijacked.

149

(a) Merchant ship with exchange illicit cargo plan on
the left, and normal behavior on the right.

(b) Fishing ship with bomb a port plan on the left, and
normal behavior on the right.

Figure 5.21: Normal and suspicious behavior of merchant and fishing ships.

Figure 5.21 provides an activity diagram with the expected behaviors of ships involved

in illicit activities on the left, and what would be the normal behavior from ships with no

terrorist plan on the right.

Requirements

With the new task of identifying the terrorist plans associated to a suspicious ship (i.e.,

exchanging illicit cargo, bombing a port, or no terrorist plan), the second iteration’s set of

goal/query/evidence was also expanded:

Identify whether a ship is a ship of interest, i.e., if the ship has some terrorist plan

associated with it.

1. Is the ship being used to exchange illicit cargo?

150

(a) Was the ship hijacked?

(b) Does the ship have a terrorist crew member?

i. Verify if a crew member is related to any terrorist;

ii. Verify if a crew member is associated with any terrorist organization.

(c) Is the ship using an unusual route?

i. Verify if there is a report that the ship is using an unusual route;

ii. Verify if there is a report that the ship is meeting some other ship for no

apparent reason.

iii. Verify if the ship had a normal change in destination (e.g., to sell the fish,

which was just caught.)

(d) Does the ship seem to exhibit evasive behavior?

i. Verify if an electronic countermeasure (ECM) was identified by a navy ship;

ii. Verify if the ship has a responsive radio and automatic identification system

(AIS).

(e) Does the ship seem to exhibit erratic behavior?

i. Verify if the crew of the ship is visible.

(f) Does the ship seem to exhibit aggressive behavior?

i. Verify if the ship has weapons visible;

ii. Verify if the ship is jettisoning cargo.

2. Is the ship being used as a suicide ship to bomb a port?

(a) Was the ship hijacked?

(b) Does the ship have a terrorist crew member?⇤

(c) Is the ship using an unusual route?⇤

(d) Does the ship seem to exhibit aggressive behavior?⇤

151

Requirements inherited from the first iteration are in italic. Items crossed out refer to

evidence considered by the SMEs, but that pertain only to war ships. Since these are not

included in the scenarios they were excluded from the model. Queries marked with ’⇤’ are

also used for another subgoal. For instance, an unusual route is expected both from ships

with plan to bomb a port and from ships planning to exchange illicit cargo. The associated

evidence is shown only for the first subgoal using the query.

Analysis & Design

As the original requirements were expanded, the UML model was also expanded to iden-

tify new concepts needed for achieving the new goals. Figure 5.22 displays the resulting

model, with some classes added (e.g., Plan, TerroristPlan, TypeOfShip, etc) and others

removed (e.g., ECM). Major changes are the new types of behavior (AggressiveBehavior

and ErraticBehavior), the classification of ships (TypeOfShip and its subclasses), and

planning information (Plan, TerroristPlan, and its subclasses). In addition, class Ship

was expanded to allow for situational awareness of its behavior and to predict future actions

based on it.

The next step is to define rules associated with the new requirements. The probabilistic

rules below complement the cardinality and uniqueness rules in Figure 5.22 (same typing

convention for rules inherited or not used in the model apply).

1. A ship is of interest if and only if it has a terrorist crew member plan;

2. A ship has a terrorist plan if and only if it has terrorist crew member or if it was

hijacked;

3. If a crew member is related to a terrorist, then it is more likely that he is also a

terrorist ;

4. If a crew member is a member of a terrorist organization, then it is more likely that

he is a terrorist ;

152

5. If an organization has a terrorist member, it is more likely that it is a terrorist orga-

nization;

6. A ship of interest is more likely to have an unusual route, independent of its intention;

7. A ship of interest, with plans of exchanging illicit cargo, is more likely to meet other

ships;

8. A ship that meets other ships to trade illicit cargo is more likely to have an unusual

route;

9. A fishing ship is more likely to have a normal change in its destination (e.g., to sell

the fish caught) than merchant ships;

10. A normal change in destination will probably change the usual route of the ship;

11. A ship of interest, with plans of exchanging illicit cargo, is more likely to have an

evasive behavior ;

12. A ship with evasive behavior is more likely to have non responsive electronic equip-

ment;

13. A ship might have non responsive electronic equipment due to maintenance problems;

14. A ship with evasive behavior is more likely to deploy an ECM;

15. A ship that is within radar range of a ship that deployed an ECM might be able to

detect the ECM, but not who deployed it;

16. A ship of interest, with plans of exchanging illicit cargo, is more likely to have an

erratic behavior;

17. A ship with normal behavior usually does not have the crew visible on the deck;

18. A ship with erratic behavior usually has the crew visible on the deck;

153

19. If the ship has some equipment failure, it is more likely to see the crew on the deck

in order to fix the problem;

20. A ship of interest, independent of its intention, is more likely to have an aggressive

behavior;

21. A ship with aggressive behavior is more likely to have weapons visible and to jettison

cargo;

22. A ship with normal behavior is not likely to have weapons visible nor to jettison cargo.

Figure 5.22: Entities, their attributes, and relations for the MDA model after the second

iteration.

154

Implementation

Once the Analysis and Design stage is finished, implementation in a specific language (PR-

OWL in this case) begins. The initial step is to map entities, attributes, and relations

to PR-OWL. There is no need to map all entities in the model to entities in PR-OWL

1. In fact, the MDA model contains many simplifications. One is to define the random

variable hasTypeOfShip mapping to values Fishing or Merchant, instead of creating them

as subclasses. This can be done by creating a class in OWL using oneOf to specify the

individuals that represent the class ShipType. Also, the original assumption of every entity

being uniquely identified by its name still holds. The entities implemented in the MDA

PO were Person, Organization, and Ship. All other entities were simplified in a similar

manner as ShipType. For details on defining entities in UnBBayes see [20].

As explained in Subsection 5.1.3, in PR-OWL 2, it is not necessary to map these entities.

In fact, the entities are defined as classes in a regular ontology using OWL. Then PR-OWL

2 simply makes use of them. As previously explained, our focus in this Section is to show

how the model evolves when using the UMP-ST process, not on describing details on how

to create a deterministic ontology.

After defining entities, the uncertain characteristics are identified. Uncertainty is repre-

sented in MEBN as random variables (RVs). On the one hand, to define a RV in PR-OWL 1

using UnBBayes, we first define its home MFrag. Grouping the RVs into MFrags is done by

examining the grouping created during Analysis & Design. On the other hand, in PR-OWL

2 RVs are independent of the MFrags containing them and are defined globally by defining

their arguments, mapping to OWL, and default distributions.

Typically, a RV represents an attribute or a relation in the designed model. For instance,

the RV isHijacked(Ship) maps to the attribute isHijacked of the class Ship and the RV

hasCrewMember(Ship, Person) maps to the relation hasCrewMember (refer to Figure 5.22).

As a predicate relation, hasCrewMember relates a Ship to one Person or more, the same

way class Ship might have one Person or more as its crew members. Hence, the possible

values (or states) of this RV are True or False. Subclasses were avoided by using Boolean

155

F
ig

ur
e

5.
23

:
M

T
he

or
y

cr
ea

te
d

in
se

co
nd

it
er

at
io

n.

156

RV like isTerrorist(Person), which represents the subclass Terrorist.

Once all resident RVs are created, their relations are defined by analyzing dependencies.

This is achieved by looking at the rules defined in the model. For instance, the first rule

indicates a dependence between hasTerroristPlan(Ship) and isShipOfInterest(Ship).

The structure of the relations added to the MDA PO can be seen in Figure 5.23.

After defining the relations, the local probability distributions are inserted for each

resident node. For conciseness, these are not presented here but they must be consistent

with the probabilistic rules defined in the Analysis & Design stage.

Appendix B Subsection B.2.2 presents the details and explanations of all MFrags and

all resident nodes and their respective LPDs of the probabilistic ontology discussed in this

Subsection.

Test

Although I have described many di↵erent types of evaluation and tests we can perform in

our model in Subsection 5.1.4, this iteration will focus on performing integration test based

on case-based evaluation, as was the case in the first iteration.

As explained in Subsection 5.1.4 it is important to try out di↵erent scenarios in order to

capture the nuances of the model. In a serious test of the model, we would have to model

a lot scenarios in order to cover at least the most important aspects of our requirements.

However, I define only three qualitatively di↵erent scenarios in order to illustrate the me-

chanics of defining and testing a scenario. The first one has a regular ship with no evidence

that supports the hypothesis of having a terrorist plan. The second one has conflicting

evidence in the sense that some supports the hypothesis of having a terrorist plan but some

does not. Finally, on the third scenario there is overwhelming evidence that supports the

hypothesis of having a terrorist plan.

When defining a scenario, it is important to define the hypothesis being tested and what

is the expected result, besides providing the evidence which will be used.

In the first scenario we have the following:

157

1. Hypothesis being tested

(a) isShipOfInterest(ship)

(b) hasTerroristPlan(ship)

2. Expected result

(a) Low probability that isShipOfInterest(ship1) = true

(b) High probability that hasTerroristPlan(ship1) = NoPlan

3. Evidence

(a) hasCrewMember(ship1, person1) = true

(b) hasCrewMember(ship1, person2) = true

(c) hasResponsiveRadio(ship1) = true

(d) hasResponsiveAIS(ship1) = true

(e) hasTypeOfShip(ship1) = Merchant

Figure 5.24 presents the SSBN network generated from scenario 1 and as expected the

probability of isShipOfInterest(ship1) = true is low and hasTerroristPlan(ship1)

= NoPlan is high, 1.65% and 99.96%, respectively.

158

Figure 5.24: SSBN generated for the first scenario.

In the second scenario we have the following:

1. Hypothesis being tested

(a) isShipOfInterest(ship)

(b) hasTerroristPlan(ship)

2. Expected result

(a) Probability that isShipOfInterest(ship1) = true between 33% and 67%

(b) Probability that hasTerroristPlan(ship1) = NoPlan between 33% and 67%

159

3. Evidence (in italic we have the di↵erent evidence compared to scenario 1)

(a) hasCrewMember(ship1, person1) = true

(b) hasCrewMember(ship1, person2) = true

(c) hasResponsiveRadio(ship1) = false

(d) hasResponsiveAIS(ship1) = true

(e) hasTypeOfShip(ship1) = Merchant

(f) hasUnusualRouteReport(ship1) = true

Figure 5.25 presents part of the SSBN network generated from scenario 2 and as ex-

pected the probability of both isShipOfInterest(ship1) = true and hasTerrorist-

Plan(ship1) = NoPlan are 44.27% and 58.60%, respectively.

Figure 5.25: SSBN generated for the second scenario.

In the third scenario we have the following:

160

1. Hypothesis being tested

(a) isShipOfInterest(ship)

(b) hasTerroristPlan(ship)

2. Expected result

(a) Probability that isShipOfInterest(ship1) = true greater than 50%

(b) Probability that hasTerroristPlan(ship1) = ExchangeIllicitCargoPlan

greater than 50%

3. Evidence (in italic we have the di↵erent evidence compared to scenario 2)

(a) hasCrewMember(ship1, person1) = true

(b) hasCrewMember(ship1, person2) = true

(c) hasResponsiveRadio(ship1) = false

(d) hasResponsiveAIS(ship1) = true

(e) hasTypeOfShip(ship1) = Merchant

(f) hasUnusualRouteReport(ship1) = true

(g) areMeeting(ship1, ship2) = true

(h) isJettisoningCargo(ship1) = true

Figure 5.26 presents the SSBN network generated from scenario 3 and as expected the

probability of both isShipOfInterest(ship1) = true and hasTerroristPlan(ship1) =

ExchangeIllicitCargoPlan are 94.44% and 93.00%, respectively.

161

Figure 5.26: SSBN generated for the third scenario.

5.2.3 Third Iteration

While the original model considered whether a person is related to a terrorist or is part of a

terrorist organization, this iteration focuses on determining whether a person is a terrorist.

Ethical aspects excluded, creating a profile of a terrorist from the available merchant popu-

lation reduces the volume of individuals requiring further investigation by limited analytic

resources. The idea is to infer an individual crew member’s terrorist a�liation given his

close relations, group associations, communications, and background influences. The work

presented in this Subsection is based on the work of Haberlin and Costa [55], which depicts

a BN for this domain, and Carvalho et al. [18], which difines a probabilistic ontology based

on the BN model from [55].

Literature on the subject reveals several models that sought to map the terrorist social

network using social network analysis and some method of probabilistic inference. Using

automation to identify interconnections between terrorists can reduce operator workload.

Yang and Ng constructed a social network from weblog data gathered through topic-specific

exploration [135]. Similarly, Co↵man and Marcus performed social network analysis through

162

pattern analysis to classify the roles of actors within a network using communication data

[25]. Dombroski and Carley propose a hierarchical Bayesian inference model to produce

a representation of a network’s structure and the accuracy of informants [38]. Krebs has

mapped a terrorist network topology from open-sources following the 9/11/2001 attacks

and introduced a model representing the degrees of separation in Al Quaida leadership [73].

In a few cases, these network analyses were taken a step further and used to evaluate e↵ects

of friendly force courses of action, e↵ects of removing particular individuals, and predicting

attacks based on patterns of activity. Wagenhals and Levis used a timed influence net to add

a temporal component to a model with terrorists embedded in a society that is supporting

them to describe desired and undesired e↵ects to both the adversary and local population

caused by friendly forces [132]. Moon and Carley linked social and spatial relations to

predict the evolution of a terrorist network over time, and posit the e↵ect of “isolating”

particular individuals within the network [95].

These models all concern groups, their members, and linkages. Our third iteration

has the goal of applying high-level fusion by combining information about relations, group

a�liations, communications, and ethno-religious or political background into a model de-

scribing the likelihood that a particular individual becomes a terrorist. This extends the

overall high-level fusion MDA PO developed so far.

Requirements

The main goal is to identify the likelihood of a particular crew member being a terrorist.

Specific statistics were not available in open-source material so the model assumes 0.001

percent of the target demographic to be involved in terrorism, and expands the query “Does

the ship have a terrorist crew member?” as follows (same typing convention applies):

1. Does the ship have a terrorist crew member?

(a) Is the crew member associated with any terrorist organization.

(b) Has the crew member been negatively influenced in some way by his/her personal

163

history?

i. Verify if the crew member has direct knowledge of someone either detained

or killed by coalition forces during the conflict;

ii. Verify if the crew member is married.

(c) Has the crew member been using communications media frequently used by ter-

rorists?

i. Verify if the crew members uses cellular communication;

ii. Verify if the crew members uses chat room communication;

iii. Verify if the crew members uses email communication;

iv. Verify if the crew members uses weblog communication;

(d) Is the crew member a potential terrorist recruit?

i. Verify if the crew member is related to any terrorist;

ii. Verify if the crew member has friendship with any terrorist.

(e) Is the crew member associated with any of the four primary terrorist cliques

introduced by Sageman who are operating in the Middle East, North Africa and

Southeastern Asia [116]?

i. Verify if the crew member is a professional, semiskilled, or unskilled laborer;

ii. Verify the education level of the crew member;

iii. Verify if the crew member is from the upper, middle, or lower class;

iv. Verify the nationality of the crew member.

Analysis and Design

This stage formally defines the model semantics captured in the UML model. Table 5.4

presents a two step approach to identifying the major entities, their attributes, and relation-

ships. Initially, the requirements are the main source for keywords representing concepts to

be defined in the ontology (e.g., highlighted text in Table 5.4). Then, the chosen keywords

are grouped in a logical manner, e.g., grouping attributes with the entities possessing them

164

Table 5.4: A simple method for identifying entities, attributes, and relationships.

. . . Does the ship have a terrorist
crew member? . . . Is the crew
member associated with any
terrorist organization. . . . Verify
if the crew member is married.
. . . Verify if the crew members
uses cellular communication; . . .

Ship
-hasCrewMember

Person
-isMemberOfOrganization
-isMarried
-usesCellularCommunication

(see simple grouping on the second column). Although not shown here for brevity, this

method was used for the analysis and design of all the requirements in this iteration. The

resulting attributes, relationships and their grouping for the entities Person and Organi-

zation is shown in Table 5.5.

These three iterations are meant to illustrate the probabilistic definitions of the ontology,

and thus reflect just the initial steps in building a full model. Further analysis of the

terms listed in Table 5.5 will show that other entities are necessary to encode the MDA

complete semantics. For instance, the Country entity is needed to express the relationship

that Person hasNationaly some Country. The next step is to understand the domain

rules, making use of the concepts identified so far to achieve the goals elicited during the

requirements stage. The following rules, already grouped in fragments, were identified after

a review of the open source literature available (same typing convention applies):

1. Terrorist organization grouping;

(a) If a crew member is a member of a terrorist organization, then it is more likely

that he is a terrorist;

(b) If an organization has a terrorist member, it is more likely that it is a terrorist

organization.

2. Background influence grouping;

165

(a) For those who are terrorists, 100% of them chose to do so because of something

in their past. That is, no one was born a terrorist, or just woke up one day and

decided to be a terrorist. That is the easy case. For those who are not, 20% chose

not to become terrorists despite having some possible factor in their background

and 80% chose not to become a terrorist possibly because they have never been

exposed7.

(b) An individual is usually negatively a↵ected (leads him/her in becoming a terror-

ist) by having direct knowledge of someone either detained or killed by coalition

forces during the conflict;

(c) In the geographic area of interest, an estimated 2% of the population knows

someone who was killed as a result of OEF/OIF [94];

(d) In the geographic area of interest, approximately 2% of the population knows

someone detained as a result of coalition operations [94];

(e) Contrary to common perception, terrorists are predominantly married in keeping

with the teachings of the Quran [116]. And about half of the general population

in the target demographic is married.

3. Communication grouping;

(a) It is possible that a crew member may communicate with a terrorist without

being involved in terrorism due to non-terrorist a�liations or other relationships

that have some normal expectation of interaction;

(b) For each of the internet communications paths there is also the background usage

rate of 28.8% in the Middle East [5]. Because the data is not broken down for the

three internet transmission paths, this probability was applied equally to chat

room, email, and weblog methods of communication;

(c) Similarly, cellular telephone usage among the general population is assumed to

be 31.6% based on Egyptian subscriber rates [4];
7This rule and explanation was given by the SME.

166

(d) Given the availability of cellular technology and subscribing to the prioritiza-

tion, a probability of 90% is assigned to terrorists communicating using cellular

telephones;

(e) The transient nature and unfettered availability of chat room communications

makes it appealing to individuals who desire to remain nameless. A probability

of 85% is assigned to terrorists communicating through chat rooms;

(f) Email is the least desirable form of communication because it requires some

form of subscriber account. Even in the event that fictitious information is used

in creating such an account, an auditable trail may lead determined forces to

the originator. Still, it is a versatile means of communication and is assigned a

probability of 65% for terrorists;

(g) The anonymity associated with weblog interaction is very appealing to terrorists.

This path is similar to chat room communications, but is less transient in content

and can reach more subscribers simultaneously. For these reasons, a probability

of 80% is assigned to weblog communications.

4. Relationship grouping;

(a) Research shows that if a crew member has a relationship with terrorists, there

is a 68% chance that he has a friend who is a terrorist;

(b) Research shows that if a crew member has a relationship with terrorists, there

is a 14% chance that he is related to a terrorist.

5. Cluster grouping;

(a) It is assumed that all active terrorists fall into one of the terrorist cliques or their

subsidiaries described by Sageman [116];

(b) Contrary to popular thought, terrorists tend to not be unskilled drifters with no

options other than martyrdom;

167

Table 5.5: Grouping for entities, attributes, and relations in third iteration.

Terrorist grouping
-Person
–isTerrorist
-Organization
–isMemberOfOrganization
–isTerroristOrganization

Communication grouping
-Person
–usesWeblog
–usesEmail
–usesCellular
–usesChatroom

Relationship grouping
-Person
–hasTerroristBeliefs
–hasKinshipToTerrorist

–hasFriendshipWithTerrorist

Background influence grouping
-Person
–hasInfluencePartition
–hasFamilyStatus
–hasOIForOEFInfluence
–knowsPersonKilledInOIForOEF
–knowsPersonImprisionedInOIForOEF

Cluster grouping
-Person
–hasClusterPartition
–hasNationality
–hasEconomicStanding
–hasEducationLevel
–hasOccupation

(c) Many believe terrorist recruits to be uneducated simpletons who are easily per-

suaded by eloquent muftis who appeal to their sense of honor and perception of

persecution. In fact, the data indicate that the typical terrorist is more educated

than the average global citizen and is by far more educated than the average

citizen in the Middle East, North Africa, and Southeastern Asia regions [116];

(d) Terrorist from the clusters described by Sageman [116] are less likely to be of

lower class than other people from that demographic area.

Given the extensive research previously done, it was possible to assert some probability

values when elaborating these rules during the Analysis & Design stage, whereas in previous

iterations probabilities were defined only during the Implementation stage. Usually, only

imprecise statements are used in these conditional rules (e.g., more likely, less likely, rare,

etc).

168

Implementation

Appropriate assumptions are needed to accommodate available data without compromising

the utility of the model. First, a terrorist will communicate with other terrorists with

certainty, but there is variability on the communication path used. Also, an individual might

communicate with terrorists inadvertently. Next, there is 0.1% chance that any random

person in the target demographic is a terrorist, which drives the coincidental interaction

between a honest crew member and someone who may happen to be a terrorist without

his knowledge. Further, the target area (Middle East, North Africa and Southeast Asia)

enables using the cluster organizations introduced by Sageman [116] as basis for the groups

in the association partition. Other attributes within this partition are compiled given

the individual’s participation in one of those groups. Additionally, a crew member could

be involved with a terrorist organization other than the four identified, and that would

negatively a↵ect the outcome since he would be grouped with non-terrorists. However,

it is likely that smaller groups are splinters from one of these major clusters and could

therefore be included in the analysis under their super-group. Finally, in its current form,

the model only captures the influence of Operation Enduring Freedom (OEF) and Operation

Iraqi Freedom (OIF) and marital status in the crew member’s background. Figure 5.27

presents the last MFrags changed/added to the MTheory for Domain Maritime Awareness

(see Figure 5.23 for previous MFrags).

Appendix B Subsection B.2.3 presents the details and explanations of all MFrags and

all resident nodes and their respective LPDs of the probabilistic ontology discussed in this

Subsection.

Test

Again, although I have described many di↵erent types of evaluation and tests we can perform

in our model in Subsection 5.1.4, this iteration will focus on performing integration test

based on case-based evaluation, as was the case in the first and second iterations.

As explained in Subsection 5.1.4 it is important to try out di↵erent scenarios in order to

169

F
ig

ur
e

5.
27

:
M

Fr
ag

s
ch

an
ge

d/
ad

de
d

in
th

ir
d

it
er

at
io

n.

170

capture the nuances of the model. In a serious test of the model, we would have to model a

lot scenarios in order to cover at least the most important aspects of our requirements. How-

ever, I define only three qualitatively di↵erent scenarios in order to illustrate the mechanics

of defining and testing a scenario. The first is a general case in which an individual fits a

profile and can therefore be “correctly” identified. In the second and third cases, situations

are introduced in which individuals could be incorrectly profiled using these techniques.

In the first scenario (“obvious” guilty), Bakari, a student at Misr University in Cairo and

member of a terrorist organization, has been tasked with smuggling explosive materials into

the United States for use in making improvised explosive devices (IED). He is from a middle-

class Egyptian family with a large extended family, including one uncle who is a member

of the Mojahedin-e Khalq Organization. Because he is a full-time student, he has not had

the opportunity to earn enough money for a suitable dowry and is still single. Recently,

postings on a terrorist-related weblog have been attributed to Bakari’s school account, in

which he laments his colleagues he watched being taken prisoner by the coalition.

Figure 5.28 shows that with all the information above the probability that Bakari is

involved in terrorism is 72.59%, primarily due to the weblog communications and a�liation

of his uncle. Removing the communications link drops him all the way down to 48.85%.

Including communications activity and removing the uncle a�liation drops his percentage

to 3.07%. It is clear that being related to and communicating with terrorists will flag an

individual very significantly as a terrorist candidate.

These results are taken into consideration in new iterations. Usually, LPDs are adjusted

in order to make probabilities that were too high go down, and vice-versa. Although it is

not described here, this was done a few times during this modeling process. In fact, before

this model can be deployed, it should go through a few more iterations of adjusting the

distributions.

171

Figure 5.28: SSBN generated for scenario 1.

Also of note is e↵ect of the Influence Partition on the outcome of this case. The scenario

introduced information about Bakari’s marital status, and this has very little e↵ect. Re-

moving the marital status results in a probability of being a terrorist of 76.27%. This value

is higher, because the “standard” terrorist profiled requires an individual to be married, not

single. Knowing someone imprisoned has a greater e↵ect and removal of this information

reduces the overall terrorism likelihood to 35.33%.

It is clear from this case study that family and friend relationships weigh heavily on

the determination of terrorist activity. In the case where an individual has a casual or

coincidental relationship with someone involved, or there is a case of name-based mistaken

identity, this would likely lead to an incorrect determination. Ranking the partitions from

most influential to least gives an ordering of Relationship, Communication, Influence, and

Cluster.

In the second scenario (guilty who looks innocent), Arif leaves his Indonesian village

at age 17 to provide for his family through life as a merchant sailor. He is an unmarried,

172

unskilled worker who did not complete high school. While looking for work as a mariner in

Jakarta, he shared a room with 5 others, at least one of whom has become involved with

the Jemaah Islamiyah organization. Arif joins his friend at a Jemaah Islamiyah meeting

where he is given a cell phone and contact information.

In this case, Arif is involved in the beginning stages of the terrorist recruitment pro-

cess. While his background has none of the profile indicators, his growing a�liation and

recruitment will eventually lead him to a positive assessment. It is nearly impossible to

force a positive likelihood onto the crew member being a terrorist by switching features in

the Influence, Communications, and Relationship partitions. This is due to the fact that

the cluster partition has driven the model to an unlikely terrorist character in the “Other”

category (see Figure 5.29). Since he does not fall into one of the terrorist cliques, it will be

di�cult to identify him as a terrorist. His background does not fit with the classic profile.

Figure 5.29: SSBN generated for scenario 2.

This scenario demonstrates a weakness of the model and intelligence collection in general.

173

Profiles are built on history, but cannot account for rapid transition from one social group

to another. Arif arrived in Jakarta as a farmer looking for work and through rapid social

a�liation became a terrorist suspect. The unknown question is whether he will continue to

grow his relationship with Jemaah Islamiyah, or turn toward life as a commercial seaman.

In the third scenario (innocent who looks guilty), Irasto leaves Amman, Jordan to earn

a living as a merchant sailor. He comes from a middle class family and began studies at

the University of Jordan before local violence frightened him into leaving. While in school,

several of his friends were detained by coalition forces under suspicion of terrorist a�liation

and have not been seen since. He frequently communicated with them by email and cell

phone prior to their disappearance.

The unknown status of Irasto’s friends muddies the waters for this scenario. They were

detained as part of OEF/OIF, and therefore a↵ect the Influence Partition, but we have no

information as to whether these friends were actually confirmed to be terrorists. If the safe

route is taken (from an intelligence perspective) they will be considered terrorists and Irasto

will also be pronounced a terrorist with a likelihood of 89.92%; without this assumption the

probability drops to 3.44%. These are the worst and best case, respectively. However, if we

considered the likelihood that his friends are terrorists, then we would obtain a probability

between those two numbers (the extreme cases).

In this iteration we are simplifying this friendship relationship. In fact, hasFriendship-

WithTerrorist is logically equivalent to the existentially quantified RV saying there exists

x such that x is a terrorist and x is friends with Irasto. This RV is a built-in RV in MEBN.

However, due to UnBBayes limitation, we are considering this existential operation is done

outside the model and we just receive the result (None, Few, or Many). The problem with

this approach is that if we want to infer the likelihood, for instance, that Irasto’s friends are

terrorists using our model, their probability will not influence Irasto’s probability of being

a terrorist, since there is no connection between the node hasFriendshipWithTerrorist

and Irasto’s actual friends. In future iterations this has to be dealt with.

174

Figure 5.30: SSBN generated for scenario 3.

The model indicates that Irasto appears to be involved with either the Cental Sta↵

or Maghreb Arab clique. This drives the Relationship partition into strongly a↵ecting the

overall likelihood. The same dilemma exists for communications. Irasto communicated with

his friends using two of the profiled communication paths. If those friends are determined

to be terrorists, then his likelihood jump significantly over what it would be if they are

not. The model recognizes guilt by association. These two particulars illustrate some of the

problems introduced when intelligence is not shared between organizations. If the analysts

have access to the final determination of his friends, Irasto will be more likely to have a

correct determination of guilt or innocence.

5.2.4 Testing the Final MDA PO

One of the major challenges in systems like PROGNOS is evaluating the situational aware-

ness and prediction generated by its probabilistic model.

The literature in Machine Learning, Artificial Intelligence, and Data Mining usually

work with real data by separating it into training and testing sets. However, in systems

175

that try to predict rare events, such as terrorist attacks, either there is not enough data or

the data available is classified. Therefore, in these cases, there is not su�cient data to be

used for testing.

To overcome this limitation, a common approach is to create di↵erent use cases or sce-

narios manually. This use case generation process is discussed in Subsection 5.2.4. However,

this is a tedious process and usually not statistically su�cient to confidently assess how good

these probabilistic models are. In Subsection 5.2.4 we present a framework that can be used

for automatically creating di↵erent and random, yet consistent, scenarios to provide su�-

cient statistical data for testing. It is to be stressed, however, that this testing is only as

good as the use cases incorporated into the testing process, and there is no substitute for

real-world evaluation. It is important to notice that although this Subsection focuses on

case-based evaluation, this should not be the only test done in the final model. In fact,

Subsection 5.1.4 presents all the tests that should be performed in the Test discipline.

Creating scenarios manually

In the first iteration the main goal is to identify if a ship is of interest, i.e., if the ship seems

to be suspicious in any way. The assumption in this model is that a ship is of interest if

and only if there is at least one terrorist crew member.

The following iterations provide clarification on the reasons behind declaring a ship as

being of interest and detects an individual crew member’s terrorist a�liation given his close

relations, group associations, communications, and background influences.

To test this final probabilistic model, let’s define 4 major scenarios:

1. a possible bomb plan using fishing ship;

2. a possible bomb plan using merchant ship;

3. a possible exchange illicit cargo using fishing ship;

4. a possible exchange illicit cargo using merchant ship.

For each of these major scenarios let’s create 5 variations:

176

1. “sure” positive;

2. “looks” positive;

3. unsure;

4. “looks” negative;

5. “sure” negative.

All 20 di↵erent scenarios were analysed by the SMEs and were evaluated as reasonable

results (what was expected). Figure 5.31 presents part of the SSBN generated for a scenario

where a merchant ship is exchanging illicit cargo and the evidence makes it obvious to detect

that this is the case. In order to be concise, and since the focus is on the automatic testing

presented in Subsection 5.2.4, this will be the only scenario presented.

Figure 5.31: Part of the SSBN generated for “sure” positive of a possible exchange illicit

cargo using merchant ship.

177

Creating scenarios automatically

Besides being a tedious process, there are a few problems with the manual creation of

scenarios as presented in Subsection 5.2.4 and in the scenarios tested for each individual

iteration. In the first set of scenarios created for the first iteration, it is clear that the test

designers just tested how well the model behaves when all the evidence is in favor of the

hypotheses being tested. However, how will the model behave if we receive evidence both

in favor of and against the hypotheses being tested? Is it still a good model in these cases?

In fact, this is a problem that the last set of scenarios presented in Subsection 5.2.4

addresses. This, the fact that some evidence favors the hypotheses and some does not, is

why there are scenarios where the expected result is “looks” positive, “looks” negative, and

unsure. However, even twenty di↵erent scenarios is not enough considering the amount

of information that is used as evidence in the final model. Let’s clarify by presenting

the numbers. In the final model there are more than 20 evidence nodes with at least

2 states each (some have more than 10 states). This gives more than 220 = 1, 048, 576

di↵erent configurations of evidence. In other words, while we tried to cover di↵erent types

of scenarios, 20 is still an extremely small number compared with the possible configurations.

However, it is unreasonable to think a human being will be able to generate and analyze

more than one million di↵erent scenarios. For this reason, we created a framework for

simulating di↵erent scenarios automatically for the PROGNOS project [28].

There are three basic steps in our simulation framework:

1. Create entities and generate some basic static ground truth for them (e.g., create

ships, define their type, and their plan);

2. Generate dynamic data for entities based on their static ground truth data (e.g., if

the ship is a fishing ship and it has a normal behavior, it will go from its origin port

to its fishing area and after some time it will go to its destination port);

3. Simulate reports for di↵erent agencies. Each agency has a probability of generating a

correct report (e.g., saying a person is from Egypt when he is actually from Egypt),

178

an incorrect report (e.g., saying a person is not from Egypt when he is in fact from

Egypt), and no report at all (e.g., not being able to say where a person is from). The

idea is that di↵erent agencies are expected to be more accurate in certain types of

information than others (e.g., the Navy is expected to have more accurate data on a

ship’s position than the FBI).

The information generated in the first two steps are considered the ground truth, while

the reports generated in the third step is given as input to the probabilistic model, like

the MDA PO described in this Section. The probabilistic model can then use these in-

formation as evidence to provide situational awareness and prediction after the reasoning

process through its posterior probabilities. Once we know what the model “thinks” is more

reasonable (e.g., if a ship is of interest), we can ask the simulation for the correct informa-

tion, i.e., the ground truth with respect to the hypotheses being tested (e.g., if the ship

is indeed of interest). We can then evaluate if the model provided a correct result. Since

this process is automatic, we can run this evaluation process as many times as we need to

and finally compute some metrics (e.g., confusion matrix) to evaluate how well our model

performs. Furthermore, a subset of these generated scenarios should be selected in order to

be presented to the SMEs to determine whether the results are reasonable.

Table 5.6: Number of TP, FP, TN, and FN.

Real/Inferred T F

T 24 3

F 11 577

To test the final MDA PO, I ran the simulation with 615 ships, where 27 of them

were ship of interest and 588 were regular ships with no terrorist plan. Tables 5.6 and 5.7

present the confusion matrix for the node isShipOfInterest(ship). Table 5.6 presents the

179

number of ships while Table 5.7 presents the probability of true positive (TP), false positive

(FP), true negative (TN), and false negative (FN). As It can be seen, the percentage of

misclassifications of ships of interest was small, only 3 in 27, i.e., only 11.11%.

Table 5.7: Percentage of TP, FP, TN, and FN.

Real/Inferred T F

T 88.89% 11.11%

F 1.87% 98.13%

Figure 5.32: Simulation editor.

In the case of the PROGNOS evaluation, the subject matter experts who evaluated

the use cases also supported the domain knowledge engineering e↵ort. A more rigorous

evaluation process would make use of independent subject matter experts who had not

180

been involved in the system design process. These independent evaluators would develop

use cases for evaluation and rate the quality of the system’s output.

However, to be able to compute the three steps described above, we need to define

some basic characteristics of the simulation. For instance, what is the geographical region

considered, which cells correspond to land and which correspond to sea, where are the ports

of interest, what are the usual routes between areas of interest, where are the common fishing

areas, etc. Figure 5.32 presents the simulation editor used to define this information.

181

Chapter 6: Conclusion

The main contribution of this research is two-fold: to enhance the syntax and seman-

tics of PR-OWL in order to attaining full compatibility between the Web Ontology Lan-

guage (OWL) and the Probabilistic Web Ontology Language (PR-OWL); and to propose a

methodology that describes how to model a probabilistic ontology and to use it for plausible

reasoning.

Chapters 2 and 3 presented the current research on areas of knowledge modeling by

describing di↵erent approaches and how they di↵er from the perspective of achieving the full

potential of the Semantic Web, and on areas of logic and ontology languages by describing

various extensions to First-Order Logic (FOL) and ontology languages for allowing the

representation of uncertainty.

The enhanced syntax and semantics of PR-OWL was described in Chapter 4, where

a formal mapping between OWL concepts and PR-OWL random variables is described in

order to address the problem of attaining full compatibility between OWL and PR-OWL.

This new syntax and semantics is defined as PR-OWL 2.

First, the importance of a formal mapping was justified through an example. Second,

a simple solution su�cient for 2-way relations was presented. Then, a more complex and

robust solution covering n-ary random variables was presented. Finally, a schematic was

given for how to do the mapping back and forth between PR-OWL random variables and

OWL triples (both predicates and functions).

Poole et. al. [110] emphasizes that it is not clear how to match the formalization

of random variables from probabilistic theories with the concepts of individuals, classes

and properties from current ontological languages like OWL. However, Poole et. al. [110]

says that “We can reconcile these views by having properties of individuals correspond to

182

random variables.” This is the approach used in this work to integrate MEBN logic and

OWL language.

Furthermore, PR-OWL 2 also adds compatibility to OWL’s primitive types and it was

shown that this plays an important role when trying to define the distribution of continuous

random variables, for instance.

One of the major changes presented in PR-OWL 2 is that there is a separate class to

define random variables, and nodes make reference to this class. This provides a series of

benefits:

• It is possible to decide dynamically which distribution to use. This is a form of

polymorphism that can be very useful to the modeler.

• As described in MEBN, every random variable should have a unique default distribu-

tion. It is now possible to guarantee this constraint in PR-OWL 2.

• In PR-OWL 2 the mapping between a PR-OWL random variable and an OWL prop-

erty is defined only once. If the resident node was used instead for the mapping, the

same mapping would eventually have to be defined more than once.

Since PR-OWL 2 now makes use of OWL’s class structure, all the control over the type

definition and type hierarchy in PR-OWL 2 is now delegated to OWL. This was not the

case in PR-OWL 1.

Besides the built-in logical operators and quantifiers, PR-OWL 2 also provides a built-

in random variable for defining type uncertainty, which is already mapped to RDF’s type

property.

The community is already familiar with the types of reasoning available for the semantic

web when using logic-based languages like OWL. So a common question is: “What types

of reasoning can one expect from probabilistic languages for the semantic web?”

According to Poole et al. [110], when integrating probability theories and ontological

languages three types of uncertainty reasoning are expected: existential uncertainty; type

uncertainty; and property value uncertainty.

183

However, these are not the only ones. For instance, Costa [27] talks about identity

uncertainty and association uncertainty (also known as reference uncertainty [47]). Never-

theless, they can also be easily reduced to property value uncertainty. Therefore, property

value uncertainty plays the same crucial role in probabilistic first-order language reasoning

as satisfiability does for logical reasoning.

Thus, it is important to notice that PR-OWL 2 besides integrating well with the web

ontology language (OWL) by mapping random variables to properties, it supports all major

uncertainty reasoning expected from a probabilistic first-order language.

The new syntax and semantics is not only described, but a series of examples are also

presented in Chapter 4 to illustrate its use and that it covers all possible definitions from

the MEBN logic.

The lack of support in probabilistic ontology engineering is addressed in Chapter 5 where

the UMP-ST methodology for modeling probabilistic ontologies is described. Two di↵erent

models were designed and described step-by-step from scratch in order to illustrate how the

methodology works and to verify it can be applied to di↵erent scenarios. One model is used

for identifying frauds in public procurements in Brazil1 and the other is used for identifying

terrorist threats on the maritime domain2. In both use cases it was highlighted PR-OWL’s

proposed version, PR-OWL 2, advantages compared to PR-OWL 1.

On the one hand, Section 5.1 focused on presenting in detail the activities that must be

executed in each discipline in the POMC cycle. On the other hand, Section 5.2 focused on

presenting how the model evolves through time with every new iteration.

The objective of the first was to present as much detail as possible on the steps necessary

to model a probabilistic ontology using the POMC cycle. The objective of the second was to

show that the UMP-ST process provides a useful approach for allowing the natural evolution

of the model through di↵erent iterations.
1This use case has been developed with the support of the Brazilian O�ce of the Comptroller General

(CGU), which has been providing the human resources and the information necessary to conduct this research
since 2008.

2This use case was developed as part of the PROGNOS project [32], which has been partially supported
by the O�ce of Naval Research (ONR), under Contract]: N00173-09-C-4008.

184

In summary, this research provides the following contributions:

1. A formal and extended definition of PR-OWL including the connection between a

statement in PR-OWL and a statement in OWL.

2. PR-OWL 2 syntax - an upper-ontology that captures the formal definition described

above.

3. PR-OWL 2 semantics - a clear specification of those aspects of the mappings from

PR-OWL to OWL for which OWL has no formal semantics.

4. A proof of concept tool which allows the use of PR-OWL 2 to model probabilistic

ontologies.

5. Methodology for modeling POs.

6. Use cases which use PR-OWL 2 and shows its benefits when compared to the current

version of PR-OWL.

6.1 Future Work

A natural next step in this research is the implementation of PR-OWL 2. In fact, this is

already being addressed by the Group of Artificial Intelligence (GIA) from the University

of Braśılia, Brazil [88].

The same applies to the UMP-ST process. It would be interesting to have a tool guiding

the user on the steps necessary to create a probabilistic ontology and link this documentation

to its implementation in UnBBayes PR-OWL 2 plug-in, for instance. A tool to help in this

documentation process is also being developed by the Group of Artificial Intelligence (GIA)

from the University of Braśılia, Brazil [35].

Even though tools are already being developed for PR-OWL 2 and UMP-ST, in order

to make sure they will be widely used by the community, two major problems should be

addressed, which are strictly related to the MEBN logic. The first is scalability, which is the

185

trade-o↵ for the expressive power MEBN has. This is a common problem in FOPLs. Fortu-

nately, some general solutions to this problem were already proposed, e.g., Lifted Inference

[12]. Other common solution is to use approximation, e.g., MC-SAT and lazy inference

[39], which are used for inference in MLNs. Even though these ideas are also applicable to

MEBN, there are currently no algorithms available that apply those ideas to address this

scalability problem in MEBN. There have been publications on hypothesis management

that also address scalability [56,57], however, only high-level ideas are presented and there

is no detailed algorithms that present a solution to this scalability problem in MEBN.

A key aspect when dealing with scalability is to actually understand the complexity of

the language. Worst case complexity of MEBN is known to be undecidable, i.e., some queries

never terminate. This is because MEBN can represent full FOL. An interesting idea for

future work would be to define PR-OWL sublanguages, as was done with OWL, and classify

the sublanguages by complexity. For instance, in Section 4.2 I present a solution for mapping

PR-OWL n-ary RVs to OWL properties. However, what would be the consequence, as far

as complexity goes, if we define a sublanguage that is able to represent only two-argument

RVs? What would be the complexity of a sublanguage that allowed only DL formulas on the

context nodes and DL expressions (formulas or terms) on input nodes, instead of full FOL

ones? Another important area of research is to understand the accuracy and complexity of

approximate reasoning algorithms for given classes of problems. For these areas of research,

work already done (e.g., [70]) could be adapted to PR-OWL and MEBN.

The second major problem is learning, which is similar with scalability as far as hav-

ing solutions available for other formalisms that could be adapted to MEBN. For instance,

although inductive logic programming (ILP) [34] has been extended to support both the

learning of concept definitions and probabilistic inclusions [86], there is no algorithm avail-

able for learning in MEBN.

An interesting extension to PR-OWL is the inclusion of RVs that can be

solved by external tools, which are more suitable to solving specific problems

186

than pure MEBN logic. For instance, a common function that is used of-

ten in programming languages is the ’>’, which could be represented by the RV

greaterThan(number1,number2). This RV would be really useful in the procure-

ment use case, for instance. One could say that if priceOf(procurement) >

1,000,000.00 and annualIncome(ownerOfWinnerEnterprise) < 50,000.00 then it is

likely that ownerOf(winnerOf(procurement)) is a front to that enterprise. This condition

could be easily represented with the greaterThan RV and it is something that an external

tool would handle much faster than using pure logic. This could be extended to define se-

mantics for math functions like sine, cosine, and tangent and others. The external function

would be called to give the value of that function given a specific argument. This would

make PR-OWL much more expressive and useful while avoiding an increase in computation

time and complexity, since this is easily done by external and specialized tools.

Finally, even though UMP-ST has been described in detail, there is still a lot to be

addressed. For instance, there are disciplines that were not even presented in the UMP-ST,

e.g., configuration management and user experience design. Besides that, the UMP-ST

process would benefit from having a more detailed description of the activities, roles, and

artifacts involved in it.

Since UMP-ST is based in the Unified Process (UP) it could use the Eclipse Process

Framework (EPF) to have a more structured way to present its disciplines, activities, best

practices, roles, etc. The EPF aims at producing a customizable software process engineer-

ing framework. It has two major goals [45]:

To provide an extensible framework and exemplary tools for software process

engineering - method and process authoring, library management, configuring

and publishing a process.

To provide exemplary and extensible process content for a range of software

development and management processes supporting iterative, agile, and incre-

mental development, and applicable to a broad set of development platforms

and applications.

187

(a) Using the EPF Composer tool to tailor the
UMP-ST process.

(b) Example of how UMP-ST process could be de-
fined.

Figure 6.1: Example of how to use EPF to tailor the UMP-ST process.

A process that is made freely available with the EPF framework is the OpenUP [9]

which is a minimally su�cient software development process. This process could be used as

a starting point to describe the UMP-ST process, since OpenUP is extensible to be used as

foundation on which process content can be added or tailored as needed. Figure 6.1 shows

how the EPF framework and the OpenUP could be used in order to tailor the UMP-ST

process.

188

Appendix A: PR-OWL 2 Abstract Syntax and Semantics

This Chapter presents the Abstract Syntax and Semantics of PR-OWL 2. In all following ex-

amples I will use the prefix pr-owl2 for the PR-OWL 2 ontology with URI “http://www.pr-

owl.org/pr-owl2.owl” and the prefix ex for the example ontology with URI “http://www.pr-

owl.org/example.owl”. The Listings are presented using the Manchester Syntax for the

OWL language [64].

Figure A.11 presents the general hierarchy of the classes defined in PR-OWL 2.

Figure A.1: The hierarchy of PR-OWL 2 classes.

1This hierarchy graph was generated using the OWLViz plugin for Protégé, which comes with the default
distribution of Protégé 4. The homepage of the OWLViz project is http://code.google.com/p/owlviz/

189

http://code.google.com/p/owlviz/

A.1 Random Variables

A random variable, in probability and statistics, is a function that maps elements of a

sample space to real numbers. The sample space represents all possible outcomes of an

event or experiment. The value of the random variable is unknown before the event happens.

Although the outcome is mapped to a real number, the real number can be used to represent

categorical values (e.g., low, medium, high), Boolean values (true and false), and other

types of values di↵erent than real numbers, as long as they represent mutually exclusive

and collectively exhaustive outcomes. More generally in the Artificial Intelligence (AI)

literature, random variables can on values from an arbitrary set.

Figure A.2: The OWL restrictions of the RandomVariable class.

In PR-OWL 2 a random variable defines the uncertainty of the outcome related to a

specific property, which has its semantics defined in OWL. There are four main concepts that

need to be defined for every random variable (see Figure A.2)2: a link to the OWL property

it defines the uncertainty of (represented by the property prowl2:definesUncertaintyOf);

the domain of the random variable defined by its arguments (represented by the property

prowl2:hasArgument); the range or possible outcomes of the random variable (represented
2This graph was generated using the OntoGraf plugin for Protégé, which comes with the default distri-

bution of Protégé 4. The homepage of the OntoGraf project is http://protegewiki.stanford.edu/wiki/
OntoGraf.

190

http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoGraf

by the property prowl2:hasPossibleValues); and finally, its distribution (represented by

the property prowl2:hasProbabilityDistribution).

In MEBN, every random variable has absurd as one of its possible values. Therefore, in

PR-OWL this is also the case.

Figure A.3 presents the general hierarchy of the class RandomVariable and its children

as well as the class Absurd. This is just part of the hierarchy shown in Figure A.1.

Figure A.3: The hierarchy of the RandomVariable class.

Figure A.4 presents not only the hierarchy but also the built-in random variables de-

fined in PR-OWL. Although it is not explicitly shown, there is a “soft” link between

RandomVariable and Absurd, represented by the restriction hasPossibleValues value

‘‘http://www.pr-owl.org/pr-owl2.owl]Absurd’’^^anyURI. This kind of “soft” link is

a pattern that is used more than once in PR-OWL 2. It is used to express that an individ-

ual/instance is related to some class or data type by some property. The main reason was

to keep within OWL DL and make use of OWL reasoners whenever possible. Otherwise,

if PR-OWL 2 was defined using OWL Full, it would not be able to take advantage of the

reasoners available for OWL, since they are usually not capable of reasoning with OWL

Full ontologies.

For instance, in order to properly say that a random variable defines the uncertainty of

some property, we would have to define the class RandomVariable having the restriction

definesUncertaintyOf some rdf:Property. However, using such a restriction would re-

quire OWL Full, since according to [53], “IRIs from the reserved vocabulary other than

191

owl:Thing and owl:Nothing must not be used to identify classes in an OWL 2 DL ontol-

ogy.” In order to keep PR-OWL 2 as an OWL 2 DL ontology, we avoided this restriction

and replaced it by definesUncertaintyOf some xsd:anyURI. Note here that there are se-

mantics that OWL-DL reasoners cannot capture, but PR-OWL reasoners are expected to

respect.

Figure A.4: Graph with the main concepts for defining random variables.

Although the possible values of a random variable is defined as any URI (by the restric-

tion hasPossibleValues only anyURI), the semantics of PR-OWL defines that the only

possible URI’s are those that point to a class or a data type.

Listing A.1: Example of a random variable with the float data type as its possible value
1 I nd i v i d u a l : RV. hasAnnualIncome
2 Types:
3 pr�owl2:RandomVariable
4 Fac t s :
5 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. hasAnnualIncome .DD. d i s t1 ,
6 pr�owl2:hasArgument RV. hasAnnualIncome .MA. person ,
7 pr�owl2 :hasPos s ib l eVa lue s ”&xsd ; f l o a t ”ˆˆxsd:anyURI ,
8 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; hasAnnualIncome”ˆˆxsd:anyURI

An example of a data random variable is presented in Listing A.1, where the ran-

dom variable ex:RV.hasAnnualIncome defines the uncertainty of the OWL property

ex:hasAnnualIncome, its domain (argument) is ex:RV.hasAnnualIncome.MA.person, its

192

range is a float (for simplification sake, we assume the annual income is just a number),

and its probability distribution is defined by ex:RV.hasAnnualIncome.DD.dist1.

More information on how to define arguments and how to define distributions

are explained in sections A.3 and A.2, respectively. For now, it su�ces to say

that ex:RV.hasAnnualIncome.MA.person is an argument of type ex:Person and

ex:RV.hasAnnualIncome.DD.dist1 is a normal distribution with mean 50,000.00 and

standard deviation 20,000.00.

An example of an object random variable is presented in Listing A.2, where the ran-

dom variable ex:RV.livesAt defines the uncertainty of the OWL property ex:livesAt,

its domain (argument) is ex:RV.livesAt.MA.person, its range is a ex:Address, and its

probability distribution is defined by ex:RV.livesAt.DD.dist1.

Listing A.2: Example of a random variable with the class Address as its possible value
1 I nd i v i d u a l : RV. l i v e sAt
2 Types:
3 pr�owl2:RandomVariable
4 Fac t s :
5 pr�owl2:hasArgument RV. l i v e sAt .MA. person ,
6 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. l i v e sAt .DD. d i s t1 ,
7 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; l i v e sAt ”ˆˆxsd:anyURI ,
8 pr�owl2 :hasPos s ib l eVa lue s ”&ex ; Address ”ˆˆxsd:anyURI

More information on how to define arguments and how to define distribu-

tions are explained in sections A.3 and A.2, respectively. For now, it suf-

fices to say that ex:RV.livesAt.MA.person is an argument of type ex:Person and

ex:RV.livesAt.DD.dist1 is uniform distribution over all the individuals of class

ex:Address.

BooleanRandomVariable is a special kind of RandomVariable, which represents

random variables that can only have Boolean values as their possible

values or range, guaranteed by the restriction hasPossibleValues value

‘‘http://www.w3.org/2001/XMLSchema]boolean’’^^anyURI (see Figure A.5).

193

Figure A.5: The OWL restrictions of the BooleanRandomVariable class.

An example of a Boolean random variable is presented in Listing A.3, where

the random variable ex:RV.isRelated defines the uncertainty of the OWL prop-

erty ex:isRelated, its domain (arguments) are ex:RV.isRelated.MA.person1 and

ex:RV.isRelated.MA.person2, its range is Boolean, and its probability distribution

is defined by ex:RV.isRelated.PT.dist1.

Listing A.3: Example of a Boolean random variable
1 I nd i v i d u a l : RV. i sRe l a t ed
2 Types:
3 pr�owl2:BooleanRandomVariable
4 Fac t s :
5 pr�owl2:hasArgument RV. i sRe l a t ed .MA. person1 ,
6 pr�owl2:hasArgument RV. i sRe l a t ed .MA. person2 ,
7 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on RV. i sRe l a t ed .PT. d i s t1 ,
8 pr�owl2 :de f i ne sUnce r ta in tyOf ”&ex ; i sRe l a t ed ”ˆˆxsd:anyURI

More information on how to define arguments and how to define distributions are

explained in sections A.3 and A.2, respectively. For now, it su�ces to say that

ex:RV.isRelated.MA.person1 and ex:RV.isRelated.MA.person2 are both argu-

ments of type ex:Person and ex:RV.isRelated.PT.dist1 has a distribution defined

by a PR-OWL table.

LogicalOperator is a special kind of BooleanRandomVariable, which represents

194

first-order logic (FOL) operators. These logic operators random variables are

mostly used to express FOL formulas using MEBN expressions (see Section A.3

for details on how to define FOL formulas). Figure A.6 presents the OWL re-

strictions for this class.

Since these operators can represent more expressive formulas than those repre-

sented in OWL DL, there is no explicit mapping of these RVs to OWL properties.

This is a special case for these built-in random variables. Nevertheless, they can

be mapped (in a future version) to an OWL ontology that defines FOL logic

operators.

Figure A.6: The OWL restrictions of the classes LogicalOperator and Quantifier.

The built-in logical operators available in PR-OWL 2 are the same and also

represented as instances as in PR-OWL 1. Namely they are:

and represents the FOL ’and’ operator and must have two arguments.

195

or represents the FOL ’or’ operator and must have two arguments.

not represents the FOL ’not’ operator and must have one argument.

equalTo represents the FOL ’=’ operator and must have two arguments.

implies represents the FOL ’)’ operator, which is an ’if then’ statement, and

must have two arguments.

iff represents the FOL ’,’ operator, which is an ’if and only if’ statement, and

must have two arguments.

Quantifier is a special kind of BooleanRandomVarible, which represents first-order

(FOL) quantifiers. These quantifier RVs are mostly used to express FOL formulas

using MEBN expressions (see Section A.3 for details on how to define FOL

formulas). Figure A.6 presents the OWL restrictions for this class.

Since these quantifiers can represent more expressive formulas than those repre-

sented in OWL DL, there is no explicit mapping of these RVs to OWL properties.

This is a special case for these built-in random variables. Nevertheless, they can

be mapped (in a future version) to an OWL ontology that defines FOL quanti-

fiers.

The built-in quantifiers available in PR-OWL 2 are the same and also represented

as instances as in PR-OWL 1. Namely they are:

exists represents the FOL ’9’ quantifier and must have two arguments (one

exemplar and one formula which it is quantifying over). If more than one

variable needs to be quantified over, i.e., if you need more than one exemplar

on the same formula, it is necessary to nest this quantifier with another

quantifier over the other bound variable. This restriction is to be consistent

with the MEBN specification presented in [78].

forAll represents the FOL ’8’ quantifier and must have two arguments (one

exemplar and one formula which it is quantifying over). If more than one

variable needs to be quantified over, i.e., if you need more than one exemplar

196

on the same formula, it is necessary to nest this quantifier with another

quantifier over the other bound variable. This restriction is to be consistent

with the MEBN specification presented in [78].

A.2 MEBN Main Elements

Figure A.7 presents the general hierarchy of the classes that represent the main elements of

the MEBN logic. This is just part of the hierarchy shown in Figure A.1.

Figure A.7: The hierarchy of the main classes that represent MEBN elements.

MTheory is a collection of MEBN Fragments (MFrags) that satisfies consistency constraints

ensuring the existence of a joint distribution over the random variables mentioned in

197

the MEBN Theory. Incomplete MTheories admit multiple di↵erent distributions. In

PR-OWL, the class MTheory allows a probabilistic ontology to have more than one

valid MTheory to represent its RVs. In addition, one MFrag can be part of more than

one MTheory. Figure A.8 presents the OWL restrictions for this class.

Figure A.8: The OWL restrictions of the MTheory class.

Listing A.4 presents a simple MTheory called FraudIdentificationInPublicPro-

curement, which is a collection of two MFrags, PersonalInformation and Finding1.

Listing A.4: MTheory example
1 I nd i v i d u a l : MTheory . FraudIdent i f i ca t i onInPub l i cProcurement
2 Types:
3 pr�owl2:MTheory
4 Fac t s :
5 pr�owl2:hasMFrag MFrag . Finding1 ,
6 pr�owl2:hasMFrag MFrag . Persona l In format ion

Figure A.9 presents the main MEBN elements and their relations. An MEBN theory

is composed of one or more MEBN fragments. An MEBN fragment is composed of

one or more nodes and it can also have ordinary variables and exemplars, which are

used in first-order logic formulas or terms (represented by MEBN expressions). A

node has its representation defined by a MEBN expression. An MEBN expression

is a first-order logic formula or term, of a specific type, represented by the random

variable (e.g., an equal formula has the equalTo random variable as its type). A

198

random variable has a default probability distribution. Finally, there are three types

of nodes. A resident node can be parent of another resident node and has a probability

distributions associated with it. An input node represents a first-order formula or term

that influences the distribution of at least one resident node, but has its distribution

defined by the random variables it uses (not defined within that MEBN fragment).

Finally, context nodes are first-order formulas that have to be true in order for the

probability distributions defined within their MEBN fragment to be valid.

Figure A.9: Graph of the main MEBN elements and their relations.

MFrag is the basic structure of any MEBN logic model. MEBN Fragments (MFrags) repre-

sent influences among clusters of related random variables and can portray repeated

patters. To represent patterns, MEBN uses ordinary variables, which are free variables

in formulas or terms that can be substituted by entity identifiers, and/or exemplars,

199

which correspond to bound variables in quantified formulas. In PR-OWL, each sub-

class of the MFrag class represents an MEBN fragment.

Every MFrag has at least one node (at least one resident node). However, it can

also have input nodes, ordinary variables and exemplars, and be part of one or more

MEBN theories. Figure A.10 presents the OWL restrictions for this class.

Figure A.10: The OWL restrictions of the MFrag class.

An MFrag is either a domain MFrag or a finding MFrag, therefore examples of MFrags

will be showed after each type is described in more detail.

DomainMFrag is the subclass of class MFrag that includes all the domain-specific

MFrags. It is disjoint from the class FindingMFrag. All generative MFrags

created by the ontology engineer (i.e. the domain expert) are individuals of this

class.

A domain MFrag di↵ers from an MFrag by allowing the use of context nodes,

200

which define the necessary conditions for the relations and distributions defined

on the MFrag to be valid. Moreover, it only accepts resident nodes of type Do-

mainResidentNode and input nodes of type GenerativeInputNode. Figure A.11

presents the OWL restrictions for this class.

Figure A.11: The OWL restrictions of the DomainMFrag class.

Figure A.12 presents the main concepts in defining a domain-specific MFrag and

its relations. A domain-specific MFrag, besides exemplars and ordinary vari-

ables, has more specific input nodes and resident nodes (namely, GenerativeIn-

putNode and DomainResidentNode, respectively). A domain resident node only

accepts simple MEBN expressions, while generative input nodes accept any type

of MEBN expression. Besides input nodes and resident nodes, a domain MFrag

has context nodes, which are responsible for defining the restrictions that must

be satisfied in order for the probabilistic relations and distributions within that

MFrag to be valid. As a context node represents a constraint that must be true,

201

it only accepts Boolean MEBN expressions.

Figure A.12: Graph with the main elements necessary to define a domain-specific MEBN

fragment.

Listing A.5 presents an MFrag called ex:PersonalInformation, that defines

the distribution of two di↵erent people being related given they live at the same

address.

Listing A.5: Domain MFrag example
1 I nd i v i d u a l : MFrag . Persona l In format ion
2 Types:
3 pr�owl2:DomainMFrag
4 Fac t s :
5 pr�owl2:isMFragOf MTheory . FraudIdent i f i ca t ionInPubl i cProcurement ,
6 pr�owl2 :hasOrdinaryVar iab le MFrag . Persona l In format ion .OV. person1 ,
7 pr�owl2 :hasOrdinaryVar iab le MFrag . Persona l In format ion .OV. person2 ,
8 pr�owl2:hasContextNode MFrag . Persona l In format ion .CN. not1 ,
9 pr�owl2:hasInputNode MFrag . Persona l In format ion .GIN . equalTo1 ,

10 pr�owl2:hasResidentNode MFrag . Persona l In format ion .DRN. i sRe l a t ed

FindingMFrag is used to convey information about findings, which is the default way

202

of entering evidence in an MEBN theory so a probabilistic algorithm can be

applied to perform inferences regarding the new evidence. It has no context

nodes, only one input and one resident node. Figure A.13 presents the OWL

restrictions for this class.

Figure A.13: The OWL restrictions of the FindingMFrag class.

Figure A.14 presents the main concepts involved in entering findings in an MEBN

theory. Besides having ordinary variables and exemplars that can be used in

formulas, which defines the finding, a finding MFrag only has one finding resident

node and one finding input node. Since the idea of a finding is to say that some

formula is true, the only MEBN expression allowed for finding resident nodes

and input nodes is Boolean.

203

Figure A.14: Graph with the main concepts and their relations for defining findings in an

MEBN theory.

The MEBN representation of a finding is shown in Figure A.15. It can be seen

that both the finding resident and input nodes represent the same Boolean ex-

pression. The di↵erence is that a finding resident node only has true and absurd

as possible values and its local probability distribution is defined as true if the

input node is true and absurd otherwise. The finding input node has the same

behavior as any regular input node, except that it can only represent Boolean

expressions.

204

Figure A.15: Bayesian network showing the pattern for representing findings in MEBN.

Listing A.6 presents a finding MFrag called Finding1, that states that

equalTo(hasAnnualIncome(Bill), 75,000.00), represented by the finding

resident node ex:MFrag.Finding1.FRN.equalTo1.

Listing A.6: Finding MFrag example
1 I nd i v i d u a l : MFrag . Finding1
2 Types:
3 pr�owl2:FindingMFrag
4 Fac t s :
5 pr�owl2:isMFragOf MTheory . FraudIdent i f i ca t ionInPubl i cProcurement ,
6 pr�owl2:hasInputNode MFrag . Finding1 . FIN . equalTo1 ,
7 pr�owl2:hasResidentNode MFrag . Finding1 .FRN. equalTo1

Node is part of an MFrag and it can define the distribution of a random variable within that

MFrag (a resident node, represented by the class ResidentNode), a random variable

that influence the distribution of nodes within that MFrag but has its distribution

205

defined somewhere else (an input node, represented by the class InputNode), or a

random variable that expresses the context in which the probability distributions

within that MFrag are valid (a context node, represented by the class ContextNode).

ResidentNode, InputNode, and ContextNode are disjoint classes.

In all cases, the random variable represented by the node is defined as a MEBN expres-

sion (for more information about MExpression see Section A.3). Besides that, every

node is resident in exactly one MFrag. Figure A.16 presents the OWL restrictions for

this class.

Figure A.16: The OWL restrictions of the Node class.

Example of nodes will be given for the more specific types of nodes

(DomainResidentNode, FindingResidentNode, ContextNode, FindingInputNode,

and GenerativeInputNode).

ResidentNode is associated with a random variable and has its probability distribu-

tion defined within that MFrag. Besides its distribution, a ResidentNode can

have parents (either InputNode or another ResidentNode) and it is a resident

node in exactly one MFrag. ResidentNode is disjoint from InputNode and Con-

textNode. Figure A.17 presents the OWL restrictions for this class.

206

Figure A.17: The OWL restrictions of the ResidentNode class.

Example of resident nodes will be given for the more specific types of resident

nodes (DomainResidentNode and FindingResidentNode).

DomainResidentNode is the subclass of ResidentNode that includes all domain-

specific resident nodes. It is disjoint from FindingResidentNode.

A DomainResidentNode only defines a distribution over a simple MEBN ex-

pression (see SimpleMExpression in Section A.3 for more information). It

can only have parents of type GenerativeInputNode or DomainResidentN-

ode. Finally, a DomainResidentNode can only be defined in exactly one

DomainMFrag. Figure A.18 presents the OWL restrictions for this class.

207

Figure A.18: The OWL restrictions of the DomainResidentNode class.

Listing A.7 presents a domain resident node with a local probability

distribution for the random variable isRelated(person1, person2) (see

SimpleMExpression in Section A.3 for more details on how to define

such MEBN expression for this resident node), conditioned on the in-

put node equalTo(livesAt(person1), livesAt(person2)) (see Genera-

tiveInputNode later in this section for more details about this input node).

Although the distribution is not shown in the example (see PR-OWLTable

208

later in this Section), it basically says the if two people live at the same

address they are more likely to be related.

Listing A.7: Domain resident node example
1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed
2 Types:
3 pr�owl2:DomainResidentNode
4 Fac t s :
5 pr�owl2 : i sRes identNodeIn MFrag . Persona l In format ion ,
6 pr�owl2 :hasParent MFrag . Persona l In format ion .GIN . equalTo1 ,
7 pr�owl2:hasMExpression
8 MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe la ted ,
9 pr�ow l 2 : ha sP robab i l i t yD i s t r i bu t i on

10 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1

FindingResidentNode is the subclass of ResidentNode that includes all finding

nodes. Finding nodes convey new evidence into a probabilistic system via a

FindingMFrag. It is disjoint from DomainResidentNode.

A FindingResidentNode can only represent a Boolean MEBN expressions

(see BooleanMExpression in Section A.3 for more information), since it is

being stated that this Boolean expression is true (a finding). It has only

one parent and it has to be of the type FindingInputNode. It cannot be

parent of any other node. Finally, it can only be defined in exactly one

FindingMFrag. Figure A.19 presents the OWL restrictions for this class.

In order to understand how to use this node, see FindingMFrag in this

section, especially the explanation of Figures A.14 and A.15.

Listing A.8 presents a finding resident node for the Boolean expres-

sion equalTo(hasAnnualIncome(Bill), 75,000.00) (see BooleanMEx-

pression in Section A.3 for more details on how to define such MEBN

expression for this finding resident node), conditioned on the input node

equalTo(hasAnnualIncome(Bill), 75,000.00) (see FindingInputNode

later in this section for more details about this input node). Again, to

understand how to define findings see FindingMFrag in this Section.

209

Figure A.19: The OWL restrictions of the FindingResidentNode class.

Listing A.8: Finding resident node example
1 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1
2 Types:
3 pr�owl2:FindingResidentNode
4 Fac t s :
5 pr�owl2 :hasParent MFrag . Finding1 . FIN . equalTo1 ,
6 pr�owl2:hasMExpression MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1

ContextNode defines a constraint on the MFrag where it is defined. Often these con-

straints define the type of arguments used for resident nodes (e.g., isA(mother,

Person), isA(person, Person)), reference constraints between these arguments

210

(e.g., mother = motherOf(person)), etc. It is disjoint from ResidentNode and

InputNode.

A ContextNode can only represent a Boolean MEBN expression (see Boolean-

MExpression in Section A.3 for more information), since it is being stated that

this Boolean expression, the constraint, has to be true (valid). Finally, it can

only be a context node in exactly one DomainMFrag. Figure A.20 presents the

OWL restrictions for this class.

Figure A.20: The OWL restrictions of the ContextNode class.

Listing A.9 presents a context node for the Boolean expression

not(equalTo(person1, person2) (see BooleanMExpression in Section A.3

for more details on how to define such MEBN expression). In other words,

this context node states that within MFrag ex:MFrag.PersonalInformation,

211

person1 and person2 have to be di↵erent.

Listing A.9: Context node example
1 I nd i v i d u a l : MFrag . Persona l In format ion .CN. not1
2 Types:
3 pr�owl2:ContextNode
4 Fac t s :
5 pr�owl2: i sContextNodeIn MFrag . Persona l In format ion ,
6 pr�owl2:hasMExpression MFrag . Persona l In format ion .CN. not1 .BME. not1

InputNode is a random variable (RV) that has its distribution defined somewhere

else, but its value influence some ResidentNode within that MFrag. Therefore,

it has to be a parent of some ResidentNode and it can only be parent of resident

nodes. Finally, it can only be an input node in exactly one DomainMFrag. It is

disjoint from ResidentNode and ContextNode. Figure A.21 presents the OWL

restrictions for this class.

Figure A.21: The OWL restrictions of the InputNode class.

212

Example of input nodes will be given for the more specific types of input nodes

(FindingInputNode and GenerativeInputNode).

FindingInputNode represents a Boolean MEBN expression (see BooleanMEx-

pression in Section A.3 for more information), which influences some Find-

ingResidentNode within that MFrag. In fact, it can only be parent of one

node, and this node has to by of type FindingResidentNode. It can only

be an input node in exactly one FindingMFrag. Finally, it is disjoint from

GenerativeInputNode. Figure A.22 presents the OWL restrictions for this

class.

Figure A.22: The OWL restrictions of the FindingInputNode class.

In order to understand how to use this node, see FindingMFrag in this

213

section, especially the explanation of Figures A.14 and A.15.

Listing A.10 presents a finding input node for the Boolean expres-

sion equalTo(hasAnnualIncome(Bill), 75,000.00) (see BooleanMEx-

pression in Section A.3 for more details on how to define such MEBN

expression for this finding input node). It is parent of the finding resident

node equalTo(hasAnnualIncome(Bill), 75,000.00) (see FindingResi-

dentNode in this section for more details about this resident node). Again,

to understand how to define findings see FindingMFrag in this Section.

Listing A.10: Finding input node example
1 I nd i v i d u a l : MFrag . Finding1 . FIN . equalTo1
2 Types:
3 pr�owl2:FindingInputNode
4 Fac t s :
5 pr�owl2 : i sParentOf MFrag . Finding1 .FRN. equalTo1 ,
6 pr�owl2:hasMExpression MFrag . Finding1 . FIN . equalTo1 .BME. equalTo1

GenerativeInputNode is a random variable (RV) that has its distribution de-

fined somewhere else, but its value influences some DomainResidentNode

within that MFrag. It can only be an input node in exactly one DomainM-

Frag. Finally, it is disjoint from FindingInputNode. Figure A.23 presents

the OWL restrictions for this class.

214

Figure A.23: The OWL restrictions of the GenerativeInputNode class.

Listing A.11 presents a generative input node for the MEBN expression

equalTo(livesAt(person1), livesAt(person2)) defined for the MFrag

MFrag.PersonalInformation. It is parent of the resident node isRela-

ted(person1,person2) (see DomainResidentNode in this Section for more

details about this resident node). The idea is basically that if two people

live at the same address they are more likely to be related.

Listing A.11: Generative input node example
1 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . equalTo1
2 Types:
3 pr�owl2:Generat iveInputNode
4 Fac t s :
5 pr�owl2 : i s InputNodeIn MFrag . Persona l In format ion ,
6 pr�owl2 : i sParentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed
7 pr�owl2:hasMExpression MFrag . Persona l In format ion .GIN . equalTo1 .BME.

equalTo1

215

ProbabilityDistribution is used to define the local distributions for each resident node

(these local distributions apply only if all context nodes in the MFrag are satisfied),

and the default distribution for a random variable (to be used if none of the local

distributions in any of its home MFrags applies). A probability distribution can

be described using an application dependent declarative format, such as UnBBayes

local probability distribution (LPD), or via a PR-OWL table (which has probability

assignments as its cells). Figure A.24 presents the OWL restrictions for this class.

Figure A.24: The OWL restrictions of the ProbabilityDistribution class.

Figure A.25 presents the main concepts and their relations for defining probabil-

ity distributions. It can be seen that both ResidentNode and RandomVariable

have probability distributions. There are two types of probability distributions, PR-

OWLTable and DeclarativeDistribution. A PR-OWLTable has probability assign-

ments (ProbabilityAssignment), which depends on conditioning states from the par-

ents (ConditioningState). A DeclarativeDistribution is defined by some script,

which follows some application-specific grammar.

216

Figure A.25: Graph with the main concepts and their relations for defining probabilistic

distributions.

DeclarativeDistribution is a distribution that is conveyed via a xsd:string data

type, using a specific format defined in the hasDeclaration data type property.

In order to allow an MEBN algorithm to work, a parser should be able to retrieve

the probability distribution information in the format it is stored and then pass

that information to the MEBN algorithm in its own application-specific format.

Figure A.26 presents the OWL restrictions for this class.

217

Figure A.26: The OWL restrictions of the DeclarativeDistribution class.

Describing a declarative probability distribution is a much more compact and

flexible way of conveying the distribution. However, it assumes that a PR-OWL

reasoner would understand the format in which the information is stored. PR-

OWL tables, on the other hand, convey probability distributions in a more in-

teroperable way, but are not flexible enough to represent complex distributions

such as the cases in which a node has multiple possible parents. For added com-

patibility, one probability distribution can be stored in multiple formats (i.e.

multiple DeclarativeDistribution individuals for the same random variable).

Listing A.12 presents a declarative distribution for the random variable li-

vesAt(person) represented by the application-dependent format for local prob-

ability distribution defined in UnBBayes. The distribution is uniform over the

possible values of the random variable (individuals of the class Address). See

RandomVariable in Section A.1 for more information about this random variable.

218

Listing A.12: Declarative distribution example for random variable livesAt(person)

1 I nd i v i d u a l : RV. l i v e sAt .DD. d i s t 1
2 Types:
3 pr�ow l 2 :De c l a r a t i v eD i s t r i bu t i on
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. l ive sAt ,
6 pr�owl2 :hasDec l a ra t i on ” [Uniform () ;] ”ˆˆ x sd : s t r i n g ,
7 pr�owl2 : i sRepresentedAs ”UnBBayes”ˆˆ x s d : s t r i n g

Listing A.13 presents a declarative distribution for the random variable hasA-

nnualIncome(person) represented by the application-dependent format for local

probability distribution defined in UnBBayes. The distribution is normal with

mean 50,000.00 and standard deviation 20,000.00. See RandomVariable in Sec-

tion A.1 for more information about this random variable.

Listing A.13: Declarative distribution example for random variable hasAnnual-
Income(person)

1 I nd i v i d u a l : RV. hasAnnualIncome .DD. d i s t 1
2 Types:
3 pr�ow l 2 :De c l a r a t i v eD i s t r i bu t i on
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. hasAnnualIncome ,
6 pr�owl2 : i sRepresentedAs ”UnBBayes”ˆˆ x sd : s t r i n g ,
7 pr�owl2 :hasDec l a ra t i on ” [Normal (50000 ,20000) ;] ”ˆˆ x s d : s t r i n g

PR-OWLTable has all the probability assignments for each state of a random variable

or resident node stored in a xsd:decimal format (future implementations might

use a specific data type that represents probabilities). Figure A.27 presents the

OWL restrictions for this class.

219

Figure A.27: The OWL restrictions of the PR-OWLTable class.

This format for storing probability distributions cannot represent complex cases

for which only formulas can represent a probability distribution (e.g. a node that

has a variable number of parents) and usually incurs in huge ontologies, since

each table can have many cells and each cell is an individual of the Probabil-

ityAssignment class. Therefore, PR-OWL tables are only recommended for the

simplest models in which the maximum level of compatibility is desired.

220

Table A.1: Table representing the distribution for the random variable isRela-

ted(person1, person2).

State Probability

True 0.001

False 0.999

Absurd 0.0

Listing A.14 presents a PR-OWL table for the random variable isRela-

ted(person1,person2). See BooleanRandomVariable in Section A.1 for more

information about this random variable. Since the random variable has 3 states

and no parents, the number of probability assignments is 3 (see ProbabilityAs-

signment in this Section for more details). Table A.13 presents the probability

distribution this PR-OWL table represents.

Listing A.14: PR-OWL table example for random variable isRela-
ted(person1,person2)

1 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1
2 Types:
3 pr�owl2:PR�OWLTable
4 Fac t s :
5 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f RV. i sRe la ted ,
6 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. ass ign1 ,
7 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. ass ign2 ,
8 pr�owl2 :hasProbabi l i tyAss ignment RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn3

3This table follows UnBBayes default way of representing probability distributions, where the states of
the child are represented in each row and the combination of parent states are represented on the header of
the table. In UnBBayes the rows have to sum to 1.

221

Table A.2: Table representing the distribution for the domain resident node isRela-

ted(person1,person2).

equalTo(livesAt(person1), livesAt(person2)) True False Absurd

True 0.9 0.001 0.0

False 0.1 0.999 0.0

Absurd 0.0 0.0 1.0

Listing A.15: PR-OWL table example for resident node isRelated(person1,person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1
2 Types:
3 pr�owl2:PR�OWLTable
4 Fac t s :
5 pr�owl2 :hasProbabi l i tyAss ignment
6 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign1 ,
7 pr�owl2 :hasProbabi l i tyAss ignment
8 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign2 ,
9 pr�ow l 2 : i sP r obab i l i t yD i s t r i bu t i o nO f

10 MFrag . Persona l In format ion .DRN. i sRe la ted ,
11 pr�owl2 :hasProbabi l i tyAss ignment
12 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign2 ,
13 pr�owl2 :hasProbabi l i tyAss ignment
14 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign4 ,
15 pr�owl2 :hasProbabi l i tyAss ignment
16 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign5 ,
17 pr�owl2 :hasProbabi l i tyAss ignment
18 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign6 ,
19 pr�owl2 :hasProbabi l i tyAss ignment
20 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign7 ,
21 pr�owl2 :hasProbabi l i tyAss ignment
22 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign8 ,
23 pr�owl2 :hasProbabi l i tyAss ignment
24 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn9

Listing A.15 presents a PR-OWL table for the domain resident node isRela-

ted(person1,person2). See DomainResidentNode in this Section for more in-

formation about this resident node. The distribution is conditional on the parent

222

input node equalTo(livesAt(person1), livesAt(person2)). Since the par-

ent has 3 states and the child has 3 states, the number of probability assignments

is 9 (see ProbabilityAssignment in this Section for more details). Table A.24

presents the probability distribution this PR-OWL table represents.

ProbabilityAssignment Each cell in an PR-OWL table has a probability assignment for

the state of a random variable or resident node given the states of its parent nodes

(random variables do not have parent nodes). Thus, the resulting relationship is

n-ary and it is represented via a the object property hasProbabilityAssignment

that includes the name of the state to which the probability is being assigned (via

the data property hasStateName), the probability value itself (via the data property

hasStateProbability), and the list of states of parent nodes (via the object property

hasConditioningState) that collectively define the context in which that probability

assignment is valid. Also, individuals of the ProbabilityAssignment class have the

object property isProbabilityAssignmentIn that links them with its respective PR-

OWL table. Figure A.28 presents the OWL restrictions for this class.

Listing A.16 presents the probability assignments of the PR-OWL table defined for

the random variable isRelated(person1,person2). See PR-OWLTable in this Section

for more information about this table. Since the random variable has 3 states and no

parents, the number of probability assignments is 3.
4This table follows UnBBayes default way of representing probability distributions, where the states of

the child are represented in each row and the combination of parent states are represented on the header of
the table. In UnBBayes the rows have to sum to 1.

223

Figure A.28: The OWL restrictions of the classes ProbabilityAssignment and Condi-

tioningState.

Listing A.16: PR-OWL table probability assignments example for random variable
isRelated(person1,person2)

1 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn1
2 Types:
3 pr�owl2 :Probab i l i tyAss ignment
4 Fac t s :
5 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
6 pr�owl2:hasStateName ” true ”ˆˆ x sd : s t r i n g ,
7 pr�ow l2 :ha sS ta t eProbab i l i t y .001 f
8
9 I n d i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn2

10 Types:
11 pr�owl2 :Probab i l i tyAss ignment
12 Fac t s :
13 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
14 pr�owl2:hasStateName ” f a l s e ”ˆˆ x sd : s t r i n g ,
15 pr�ow l2 :ha sS ta t eProbab i l i t y .999 f
16
17 I nd i v i d u a l : RV. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn3
18 Types:
19 pr�owl2 :Probab i l i tyAss ignment
20 Fac t s :
21 pr�owl2 : i sProbab i l i t yAs s i gnment In RV. i sRe l a t ed .PT. d i s t1 ,
22 pr�owl2:hasStateName ”absurd”ˆˆ x sd : s t r i n g ,
23 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f

224

Listing A.17: PR-OWL table probability assignments example for domain resident
node isRelated(person1,person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn1
2 Types:
3 pr�owl2 :Probab i l i tyAss ignment
4 Fac t s :
5 pr�owl2 :hasCond i t i on ingState
6 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond1 ,
7 pr�owl2 : i sProbab i l i t yAs s i gnment In
8 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
9 pr�owl2:hasStateName ” true ”ˆˆ x sd : s t r i n g ,

10 pr�ow l2 :ha sS ta t eProbab i l i t y . 9 f
11
12 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn2
13 Types:
14 pr�owl2 :Probab i l i tyAss ignment
15 Fac t s :
16 pr�owl2 :hasCond i t i on ingState
17 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond1 ,
18 pr�owl2 : i sProbab i l i t yAs s i gnment In
19 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
20 pr�owl2:hasStateName ” f a l s e ”ˆˆ x sd : s t r i n g ,
21 pr�ow l2 :ha sS ta t eProbab i l i t y . 1 f
22
23 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn3
24 Types:
25 pr�owl2 :Probab i l i tyAss ignment
26 Fac t s :
27 pr�owl2 :hasCond i t i on ingState
28 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond1 ,
29 pr�owl2 : i sProbab i l i t yAs s i gnment In
30 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
31 pr�owl2:hasStateName ”absurd”ˆˆ x sd : s t r i n g ,
32 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f
33
34 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn4
35 Types:
36 pr�owl2 :Probab i l i tyAss ignment
37 Fac t s :
38 pr�owl2 :hasCond i t i on ingState
39 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond2 ,
40 pr�owl2 : i sProbab i l i t yAs s i gnment In
41 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
42 pr�owl2:hasStateName ” true ”ˆˆ x sd : s t r i n g ,
43 pr�ow l2 :ha sS ta t eProbab i l i t y .001 f
44
45 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn5
46 Types:
47 pr�owl2 :Probab i l i tyAss ignment
48 Fac t s :
49 pr�owl2 :hasCond i t i on ingState
50 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond2 ,
51 pr�owl2 : i sProbab i l i t yAs s i gnment In
52 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
53 pr�owl2:hasStateName ” f a l s e ”ˆˆ x sd : s t r i n g ,

225

54 pr�ow l2 :ha sS ta t eProbab i l i t y .999 f
55
56 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn6
57 Types:
58 pr�owl2 :Probab i l i tyAss ignment
59 Fac t s :
60 pr�owl2 :hasCond i t i on ingState
61 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond2 ,
62 pr�owl2 : i sProbab i l i t yAs s i gnment In
63 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
64 pr�owl2:hasStateName ”absurd”ˆˆ x sd : s t r i n g ,
65 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f
66
67 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn7
68 Types:
69 pr�owl2 :Probab i l i tyAss ignment
70 Fac t s :
71 pr�owl2 :hasCond i t i on ingState
72 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond3 ,
73 pr�owl2 : i sProbab i l i t yAs s i gnment In
74 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
75
76 pr�owl2:hasStateName ” true ”ˆˆ x sd : s t r i n g ,
77 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f
78
79 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn8
80 Types:
81 pr�owl2 :Probab i l i tyAss ignment
82 Fac t s :
83 pr�owl2 :hasCond i t i on ingState
84 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond3 ,
85 pr�owl2 : i sProbab i l i t yAs s i gnment In
86 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
87 pr�owl2:hasStateName ” f a l s e ”ˆˆ x sd : s t r i n g ,
88 pr�ow l2 :ha sS ta t eProbab i l i t y 0 f
89
90 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. a s s i gn9
91 Types:
92 pr�owl2 :Probab i l i tyAss ignment
93 Fac t s :
94 pr�owl2 :hasCond i t i on ingState
95 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond3 ,
96 pr�owl2 : i sProbab i l i t yAs s i gnment In
97 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t1 ,
98 pr�owl2:hasStateName ”absurd”ˆˆ x sd : s t r i n g ,
99 pr�ow l2 :ha sS ta t eProbab i l i t y 1 f

Listing A.17 presents the probability assignments of the PR-OWL table defined for

the domain resident node isRelated(person1,person2). See PR-OWLTable in this

Section for more information about this table. Since the parent has 3 states and the

226

child has 3 states, the number of probability assignments is 9. For more information

on the conditioning states for these probability assignments, see ConditioningState

in this Section.

ConditioningState represents the conditioning state for a probability assignment. In

other words, it defines the state of a parent that is conditioning the probability as-

signment for a specific state of the child node. Individuals of this class are used to

build PR-OWL probabilistic distribution tables. Each cell of such a table corresponds

to a probability assignment of a possible value of a node given one combination of

the states of its parents. Each individual of class ConditioningState represents one

parent/state pair, so a probability assignment is conditioned by a set of Condition-

ingState pairs (one for each parent node). Figure A.28 presents the OWL restrictions

for this class.

Listing A.18 presents the conditioning states of the probability assignments of the

PR-OWL table defined for the domain resident node isRelated(person1,person2).

See PR-OWLTable and ProbabilityAssignment in this Section for more information

about this table. Since the parent has 3 states the number of conditioning states is

also 3 (conditioning the parent on the state true, false, and absurd).

Listing A.18: Conditioning states for the probability assignments of the PR-OWL
table defined for the domain resident node isRelated(person1,person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond1
2 Types:
3 pr�owl2 :Cond i t i on ingState
4 Fac t s :
5 pr�ow l2 : i sCond i t i on ingSta t eOf
6 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign1 ,
7 pr�ow l2 : i sCond i t i on ingSta t eOf
8 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign2 ,
9 pr�ow l2 : i sCond i t i on ingSta t eOf

10 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign3 ,
11 pr�owl2:hasCondit ioningNode MFrag . Persona l In format ion .GIN . equalTo1 ,
12 pr�owl2:hasStateName ” true ”ˆˆ x s d : s t r i n g
13
14 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond2
15 Types:
16 pr�owl2 :Cond i t i on ingState
17 Fac t s :

227

18 pr�ow l2 : i sCond i t i on ingSta t eOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT.
d i s t 1 .PA. ass ign4 ,

19 pr�ow l2 : i sCond i t i on ingSta t eOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT.
d i s t 1 .PA. ass ign5 ,

20 pr�ow l2 : i sCond i t i on ingSta t eOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT.
d i s t 1 .PA. ass ign6 ,

21 pr�owl2:hasCondit ioningNode MFrag . Persona l In format ion .GIN . equalTo1 ,
22 pr�owl2:hasStateName ” f a l s e ”ˆˆ x s d : s t r i n g
23
24 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .CS . cond3
25 Types:
26 pr�owl2 :Cond i t i on ingState
27 Fac t s :
28 pr�ow l2 : i sCond i t i on ingSta t eOf
29 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign7 ,
30 pr�ow l2 : i sCond i t i on ingSta t eOf
31 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign8 ,
32 pr�ow l2 : i sCond i t i on ingSta t eOf
33 MFrag . Persona l In format ion .DRN. i sRe l a t ed .PT. d i s t 1 .PA. ass ign9 ,
34 pr�owl2:hasCondit ioningNode MFrag . Persona l In format ion .GIN . equalTo1 ,
35 pr�owl2:hasStateName ”absurd”ˆˆ x s d : s t r i n g

A.3 MEBN Expressions

Figure A.29 presents the general hierarchy of the classes used for defining arguments and

MEBN expressions. This is just part of the hierarchy shown in Figure A.1.

Figure A.30 presents the main concepts and their relations necessary for defining argu-

ments and MEBN expressions. There are mainly two di↵erent types of arguments:

1. those used for mapping random variable arguments to OWL properties domain or

range (represented by the class MappingArgument), and

2. those used in MEBN expressions (MExpressionArguemnt, ExemplarArgument, Ordi-

naryVariableArgument, and ConstantArgument).

228

Figure A.29: The hierarchy of the main classes for representing arguments and MEBN

expressions.

A MExpression has a type of random variable as its main element (e.g., equalTo, or,

and, livesAt, etc). Every node is represented by an MEBN expression. However, some

nodes can only be represented by a specific type of MExpression. FindingResidentNode,

FindingInputNode, and ContextNode can only be represented by BooleanMExpression. A

BooleanMExpression only allow a specific type of random variable, BooleanRandomVari-

able. DomainResidentNode can only be represented by SimpleMExpression, which is an

MEBN expression that only has arguments of type OrdinaryVariable or ConstantArgu-

ment.

229

Figure A.30: Graph with main concepts and their relations necessary for defining arguments

and MEBN expressions.

MExpression represents a first-order logic formula or term, which has the random variable

(RV) as its main element. The number of arguments defined on the MEBN expres-

sion has to be the same as the number of arguments defined on the RV it refers to.

Furthermore, the argument types have to be compatible. Figure A.31 presents the

OWL restrictions for this class.

There are basically four types of arguments which can be used to express a MEBN ex-

pression: ConstantArgument, OrdinaryVariableArgument, ExemplarArgument, and

MExpressionArgument. They will be explained latter in this Section.

230

Figure A.31: The OWL restrictions of the MExpression class.

SimpleMExpression represents an atomic formula or term, also called atom. There-

fore, it can only have arguments of type ConstantArgument or OrdinaryVari-

ableArgument, in other words, it cannot have subformulas/subterms. Fig-

ure A.32 presents the OWL restrictions for this class.

Figure A.32: The OWL restrictions of the SimpleMExpression class.

231

Listing A.19 presents a simple MEBN expression for the resident node isRe-

lated(person1, person2) (see DomainResidentNode in Section A.2 for more

information on this node). The type of formula for this MEBN expression is

the random variable isRelated (see BooleanRandomVariable in Section A.1 for

more information on this random variable). Finally, it has two ordinary vari-

able arguments, person1 and person2 (see OrdinaryVariableArgument in this

Section for more information about these arguments).

Listing A.19: Simple MEBN expression example
1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed
2 Types:
3 pr�owl2:SimpleMExpression
4 Fac t s :
5 pr�owl2:typeOfMExpression RV. i sRe la ted ,
6 pr�owl2: i sMExpress ionOf MFrag . Persona l In format ion .DRN. i sRe la ted ,
7 pr�owl2:hasArgument
8 MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person1 ,
9 pr�owl2:hasArgument

10 MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person2

BooleanMExpression represents a Boolean formula. In other words, the random vari-

able (RV) which defines the type of MEBN expression can only be a Boolean-

RandomVariable. Figure A.33 presents the OWL restrictions for this class.

232

Figure A.33: The OWL restrictions of the BooleanMExpression class.

Listing A.20 presents the Boolean MEBN expression

equalTo(hasAnnualIncome(Bill), 75,000.00). It has two arguments,

the MEBN expression hasAnnualIncome(Bill) (see MExpressionArgument

in this Section for more information) and the data constant 75,000.00 (see

ConstantArgument in this Section for more information). The type of ran-

dom variable for this expression is equalTo (see BooleanRandomVariable in

Section A.1 for more information). This MEBN expression defines the finding

resident node that states that Bill has an annual income of 75,000.00 (see

FindingResidentNode in Section A.2 for more information about this finding

resident node).

233

Listing A.20: Example of Boolean MEBN expression
1 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1
2 Types:
3 pr�owl2:BooleanMExpression
4 Fac t s :
5 pr�owl2:typeOfMExpression pr�owl2:equalTo ,
6 pr�owl2: i sMExpress ionOf MFrag . Finding1 .FRN. equalTo1 ,
7 pr�owl2:hasArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA. arg1
8 pr�owl2:hasArgument MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .CA. f l o a t 1 ,

Argument is an argument used for either constructing MEBN expressions (through the use

of ConstantArgument, OrdinaryVariableArgument, ExemplarArgument, and MEx-

pressionArgument) or for mapping random variables arguments defined in PR-OWL

to domain and ranges of properties defined in OWL (through the use of MappingAr-

gument). Figure A.34 presents the OWL restrictions for this class.

Figure A.34: The OWL restrictions of the Argument class.

ConstantArgument is used to represent formulas or terms which use either data

and/or object constants, e.g., equalTo(livesAt(Bill), address1)) (where

234

Bill and address1 are constants, which represent Person and Address, re-

spectively), equalTo(hasAnnualIncome(Bill), 75,000.00) (assuming income

is just a number, which represents value in US Dollar and Bill and 75,000.00

are constants, which represent Person and float, respectively). Figure A.35

presents the OWL restrictions for this class.

Figure A.35: The OWL restrictions of the ConstantArgument class.

235

Listing A.21 presents two constant arguments. On the one hand, Bill is an ob-

ject argument used on the MExpression hasAnnualIncome(Bill), which is the

first argument (see MExpressionArgument in this Section for more information).

On the other hand, 75,000.00 is a data argument used on the MExpression

equalTo(hasAnnualIncome(Bill), 75,000.00), which is the second argument

(see BooleanMExpression in this Section for more information).

Listing A.21: Example of object and data constant arguments
1 < !�� The o b j e c t cons tant argument f o r B i l l ��>
2 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 .CA.

person1
3 Types:
4 pr�owl2:ConstantArgument
5 Fac t s :
6 pr�owl2: isArgumentOf
7 MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 ,
8 pr�owl2:typeOfArgument B i l l ,
9 pr�owl2:hasArgumentNumber 1

10
11 < !�� The data cons tan t argument f o r 75 ,000.00 ��>
12 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .CA. f l o a t 1
13 Types:
14 pr�owl2:ConstantArgument
15 Fac t s :
16 pr�owl2: isArgumentOf MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 ,
17 pr�owl2:typeOfDataArgument 75000 f ,
18 pr�owl2:hasArgumentNumber 2

OrdinaryVariableArgument is used to represent free variable arguments (not quan-

tified over) used in a formula or term, e.g., livesAt(person), where person is

a free variable, that can be substituted by an individual of the class Person.

Figure A.36 presents the OWL restrictions for this class.

236

Figure A.36: The OWL restrictions of the OrdinaryVariableArgument class.

Listing A.22: Ordinary variable arguments for the simple MEBN expression
isRelated(person1,person2)

1 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person1
2 Types:
3 pr�owl2:OrdinaryVariableArgument
4 Fac t s :
5 pr�owl2: isArgumentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe lated ,
6 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person1 ,
7 pr�owl2:hasArgumentNumber 1
8 I nd i v i d u a l : MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person2
9 Types:

10 pr�owl2:OrdinaryVariableArgument
11 Fac t s :
12 pr�owl2: isArgumentOf MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME.

i sRe lated ,
13 pr�owl2:typeOfArgument MFrag . Persona l In format ion .OV. person2 ,
14 pr�owl2:hasArgumentNumber 2

237

Listing A.22 presents the ordinary variable arguments of the simple MEBN ex-

pression isRelated(person1,person2). See SimpleMExpression in this Sec-

tion for more information about this expression. The first argument is the ordi-

nary variable MFrag.PersonalInformation.OV.person1 and the second argument

is the ordinary variable MFrag.PersonalInformation.OV.person2. See Ordinary-

Variable in this section for more information about ordinary variables.

ExemplarArgument is used to represent a filler for a bound vari-

able (variables that are quantified over) used in a formula, e.g.,

forAll(mother)(forAll(child)(implies(hasChild(mother,child), isRe-

lated(child,mother)))), where mother and child are bound variables of

type Person. Figure A.37 presents the OWL restrictions for this class.

Figure A.37: The OWL restrictions of the ExemplarArgument class.

238

Listing A.23 presents the mother and child exemplar arguments that are used

on both forAll statements from the previous example.

Listing A.23: Exemplar argument example
1 < !�� The exemplar argument mother ��>
2 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME. f o rA l l 1 .EA. mother
3 Types:
4 pr�owl2:ExemplarArgument
5 Fac t s :
6 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME. fo rA l l 1 ,
7 pr�owl2:typeOfArgument MFrag . Persona l In format ion .E . mother ,
8 pr�owl2:hasArgumentNumber ”1”ˆˆ x s d : i n t
9

10 < !�� The exemplar argument c h i l d ��>
11 I nd i v i d u a l : MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME. f o rA l l 1 .BME. f o rA l l 1 .EA.

ch i l d
12 Types:
13 pr�owl2:ExemplarArgument
14 Fac t s :
15 pr�owl2: isArgumentOf MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME. f o rA l l 1 .

BME. fo rA l l 1 ,
16 pr�owl2:typeOfArgument MFrag . Persona l In format ion .E . ch i ld ,
17 pr�owl2:hasArgumentNumber ”1”ˆˆ x s d : i n t

MExpressionArgument is used to allow the construction of complex formu-

las or terms (more than one RV used in the formula or term), e.g.,

equalTo(livesAt(person1), livesAt(person2)), where person1 and per-

son2 are free variables of type Person. Figure A.38 presents the OWL restrictions

for this class.

239

Figure A.38: The OWL restrictions of the MExpressionArgument class.

Listing A.24 presents the MEBN expression argument hasAnnualIncome(Bill)

used on the Boolean MEBN expression equalTo(hasAnnualIncome(Bill),

75,000.00) (see BooleanMEBNExpression in this Section for more information).

The type of this argument is the MEBN expression itself, which has the random

variable hasAnnualIncome as its type (see RandomVariable in Section A.1 for

more information). The only argument for this expression is the object constant

Bill (see ConstantArgument in this Section for more information).

240

Listing A.24: Example of MEBN expression argument
1 < !�� The MEBN expre s s i on argument ��>
2 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA. arg1
3 Types:
4 pr�owl2:MExpressionArgument
5 Fac t s :
6 pr�owl2: isArgumentOf MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 ,
7 pr�owl2:typeOfArgument
8 MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 ,
9 pr�owl2:hasArgumentNumber 1

10
11 </ owl:NamedIndividual>
12
13 < !�� The MEBN expre s s i on used as an argument ��>
14 I nd i v i d u a l : MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1
15 Types:
16 pr�owl2:MExpression
17 Fac t s :
18 pr�owl2:isTypeOfArgumentIn
19 MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .MA. arg1 ,
20 pr�owl2:hasArgument
21 MFrag . Finding1 .FRN. equalTo1 .BME. equalTo1 .ME. hasAnnualIncome1 .CA. person1

MappingArgument is used to map random variable arguments to OWL properties do-

main or range. On the one hand, to map a random variable argument to a domain

of some OWL property, it is necessary to say that this argument isSubjectIn

some OWL property. On the other hand, to map a random variable argument

to a range of some OWL property, it is necessary to say that this argument

isObjectIn some OWL property. In both cases, the type of the argument has

to be consistent with the OWL property it points to. If isSubjectIn is used,

then the type of the argument (defined by the property isSubstitutedBy) has

to be the same as the domain of the property it points to. However, if isOb-

jectIn is used instead, then the type of the argument (defined by the property

isSubstitutedBy) has to be the same as the range of the property it points to.

Since OWL DL does not allow the use of restricted vocabulary when defining the

ontology, instead of saying that isSubjectIn only rdf:Property and isOb-

jectIn only rdf:Property, the restrictions are defined as isSubjectIn only

rdfs:anyURI and isObjectIn only rdfs:anyURI (see Section 4.4.2 for more

241

information). Nevertheless, the semantics of PR-OWL enforce that these URIs

have to point to RDF properties. The same reasoning applies to the restriction

isSubstitutedBy only/some rdfs:anyURI. The semantics of PR-OWL enforce

that these URIs have to point to either classes or data types. Figure A.39 presents

the OWL restrictions for this class.

Figure A.39: The OWL restrictions of the MappingArgument class.

242

Listing A.25 presents the mapping argument for the random variable hasAnnual-

Income(person). It maps the first and only argument person to the subject of

the OWL property hasAnnualIncome. See Section A.1 for more information on

this random variable.

Listing A.25: Example of mapping argument
1 I nd i v i d u a l : RV. hasAnnualIncome .MA. person
2 Types:
3 pr�owl2:MappingArgument
4 Fac t s :
5 pr�owl2: isArgumentOf RV. hasAnnualIncome ,
6 pr�ow l 2 : i s Sub j e c t I n ”&ex ; hasAnnualIncome”ˆˆxsd:anyURI ,
7 pr�owl2:hasArgumentNumber 1

OrdinaryVariable is a placeholder used in MFrags to refer to non-specific entities as ar-

guments in MEBN expressions in its MFrag. It is used to represent free variables

(not quantified over) used in a formula or term, e.g., livesAt(person), where per-

son is a free variable, that can be substituted by an individual of the class Person.

Figure A.40 presents the OWL restrictions for this class.

Figure A.40: The OWL restrictions of the OrdinaryVariable class.

243

Listing A.26 presents an ordinary variable person1, which can be substituted by

individuals of the class Person. This ordinary variable is defined in the MFrag Per-

sonalInformation. Finally, this ordinary variable is used as an argument in three

di↵erent MEBN expressions (see OrdinaryVariableArgument in this Section for more

information).

Listing A.26: Example of ordinary variable
1 I nd i v i d u a l : MFrag . Persona l In format ion .OV. person1
2 Types:
3 pr�owl2 :Ord inaryVar iab le
4 Fac t s :
5 pr�owl2 : i sOrd ina ryVar i ab l e In MFrag . Persona l In format ion ,
6 pr�owl2:isTypeOfArgumentIn
7 MFrag . Persona l In format ion .CN. not1 .BME. not1 .BME. equalTo1 .OVA. person1 ,
8 pr�owl2:isTypeOfArgumentIn
9 MFrag . Persona l In format ion .GIN . equalTo1 .BME. equalTo1 .ME. l i v e sAt1 .OVA.

person1 ,
10 pr�owl2:isTypeOfArgumentIn
11 MFrag . Persona l In format ion .DRN. i sRe l a t ed .SME. i sRe l a t ed .OVA. person1 ,
12 pr�owl2 : i sSubs t i tu tedBy ”&ex ; Person”ˆˆxsd:anyURI

Exemplar represents an exemplar constant in an MEBN quantifier expression. Each

MEBN quantifier expression corresponds to a first-order formula beginning with

a universal or existential quantifier. The exemplar constant in the MEBN ex-

pression represents a generic individual within the scope of the universal or ex-

istential quantifier of the corresponding first-order formula. It is used to rep-

resent bound variables (variables that are quantified over) used in a formula,

e.g., forAll(mother)(forAll(child)(implies(hasChild(mother,child), isRe-

lated(child,mother)))), where mother and child are bound variables of type Per-

son. Figure A.41 presents the OWL restrictions for this class.

244

Figure A.41: The OWL restrictions of the Exemplar class.

Listing A.27 presents the exemplar variables mother and child used on the forAll

formulas on the previous example.

Listing A.27: Exemplar example
1 < !�� The exemplar v a r i a b l e c h i l d ��>
2 I nd i v i d u a l : MFrag . Persona l In format ion .E. c h i l d
3 Types:
4 pr�owl2:Exemplar
5 Fac t s :
6 pr�owl2 : i sExemplarIn MFrag . Persona l In format ion ,
7 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .BME. f o rA l l 1 .BME. imp l i e s 1 .ME. hasChi ld1 .EA. ch i ld ,
8 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .BME. f o rA l l 1 .EA. ch i ld ,
9 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .BME. f o rA l l 1 .BME. imp l i e s 1 .ME. i sRe l a t ed1 .EA. ch i l d
10
11 < !�� The exemplar v a r i a b l e mother ��>
12 I nd i v i d u a l : MFrag . Persona l In format ion .E. mother
13 Types:
14 pr�owl2:Exemplar
15 Fac t s :
16 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .EA. mother ,
17 pr�owl2 : i sExemplarIn MFrag . Persona l In format ion ,
18 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .BME. f o rA l l 1 .BME. imp l i e s 1 .ME. hasChi ld1 .EA. mother ,
19 pr�owl2:isTypeOfArgumentIn MFrag . Persona l In format ion .GIN . f o rA l l 1 .BME.

f o rA l l 1 .BME. f o rA l l 1 .BME. imp l i e s 1 .ME. i sRe l a t ed1 .EA. mother

245

Appendix B: Use Cases Implementation Details

In this Appendix I will give the details of the probabilistic ontologies presented in Chapter 5.

B.1 Probabilistic Ontology for Procurement Fraud Detec-

tion and Prevention in Brazil

All the assumptions for the RVs created and for defining their LPD will be described for

every MFrag designed for the MTheory that represents the PO for the Procurement Fraud

Detection and Prevention implemented. In each MFrag, the resident RVs are shown as

yellow rounded rectangles; the input RVs are shown as gray trapezoids; the context RVs

are shown as green pentagons.

In order to make reference easier, the rules defined during Analysis & Design in Chapter 5

Subsection 5.1.2 will be repeated here. The rules are:

1. If a member of the committee has a relative (mother, father, brother, or sister) re-

sponsible for a bidder in the procurement, then it is more likely that a relation exists

between the committee and the enterprises, which inhibits competition.

2. If a member of the committee lives at the same address as a person responsible for

a bidder in the procurement, then it is more likely that a relation exists between the

committee and the enterprises, which lowers competition.

3. If a contract of high value related to a procurement has a responsible person of the

winner enterprise with low education or low annual income, then this person is likely

to be a front for the firm, which lowers competition.

4. If the responsible person of the winner enterprise is also responsible for another enter-

prise that has its CGC suspended for procuring with the public administration, then

this procurement is more likely to need further investigation.

246

5. If the responsible people for the bidders in the procurement are related to each other,

then a competition is more likely to have been compromised.

6. If 1, 2, 3, or 5, then the procurement is more likely to require further investigation.

7. If a member of the committee has been convicted of a crime or has been penalized

administratively, then he/she does not have a clean history. If he/she was recently

investigated, then it is likely that he/she does not have a clean history.

8. If the relation defined in 1 and 2 is found in previous procurements, then it is more

likely that there will be a relation between this committee and future bidders.

9. If 7 or 8, then it is more likely that the committee needs to be changed.

In order to facilitate the understanding of the MFrags in this model, it is useful to know

the dependence between the MFrags.

The MFrags with no dependency are:

1. Personal Information;

2. Procurement Information;

3. Enterprise Information; and

4. Judgement History.

The other MFrags have the following dependence:

1. Front of Enterprise

(a) Procurement Information; and

(b) Personal Information.

2. Exists Front in Enterprise

(a) Enterprise Information; and

247

(b) Front of Enterprise.

3. Related Participant Enterprises

(a) Procurement Information;

(b) Enterprise Information; and

(c) Personal Information.

4. Member Related to Participant

(a) Personal Information;

(b) Procurement Information; and

(c) Enterprise Information.

5. Competition Compromised

(a) Procurement Information;

(b) Exists Front in Enterprise;

(c) Related Participant Enterprises; and

(d) Member Related to Participant.

6. Related to Previous Participants

(a) Personal Information;

(b) Procurement Information; and

(c) Enterprise Information.

7. Suspicious Committee

(a) Procurement Information;

(b) Judgment History; and

(c) Related to Previous Participants.

248

8. Owns Suspended Enterprise

(a) Enterprise Information.

9. Suspicious Procurement

(a) Procurement Information;

(b) Enterprise Information;

(c) Competition Compromised;

(d) Owns Suspended Enterprise; and

(e) Suspicious Committee.

The MFrags will be presented from the less dependent to the more dependent. I.e.,

an MFrag will only be described after all its dependent MFrags have been described. It

is consistent with the order of the dependency explanations given previously. Also, all the

LPDs defined in this PO are notional only. No real data or statistics was used. Therefore,

before this model can be used in production, a few more iterations are necessary in order

to make sure these notional probabilities are correct.

Figure B.1: MFrag Personal Information.

249

Figure B.1 presents the Personal Information MFrag. In it we have RVs associated to the

class Person. Listings B.1, B.75, B.3, and B.4 present the LPDs for the RVs, hasAnnual-

Income(person1), hasEducationLevel(person1), livesAtSameAddress(person1, per-

son2), and isRelated(person1, person2), respectively. The assumptions behind these

LPDs are that a person is more likely to have a lower income, the most people have either

middle school or high school education, two random people rarely live at the same address,

and if two people live at the same address, they are more likely to be related1.

Listing B.1: LPD for hasAnnualIncome(person)
1 [
2 Lower10k = . 4 ,
3 From10kTo30k = . 3 ,
4 From30kTo60k = . 2 ,
5 From60kTo100k = .09 ,
6 Greater100k = .01
7]

Listing B.2: LPD for hasEducationLevel(person)
1 [
2 NoEducation = . 1 ,
3 MiddleSchool = . 4 ,
4 HighSchool = . 3 ,
5 Undergraduate = .15 ,
6 Graduate = .05
7]

Listing B.3: LPD for livesAtSameAddress(person1, person2)

1 [
2 t rue = .0001 ,
3 f a l s e = .9999
4]

1Notice that although it is reasonable to think that the education level of a person influences this person’s
annual income, in this iteration the PO is not modeled this way. This is not a major issue because we will
usually have both information available. However, in future iterations this dependence should be modeled
or at least taken into consideration.

250

Listing B.4: LPD for isRelated(person1, person2)

1 i f any person1 . person2 have (l ivesAtSameAddress = true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

Figure B.2: MFrag Procurement Information.

Figure B.2 presents the Procurement Information MFrag. In it we have RVs asso-

ciated to the class Procurement. Listings B.5, B.6, B.7, and B.8 present the LPDs

for the RVs, isMemberOfCommittee(person, procurement), hasValue(procurement),

isProcurementFinished(procurement), and isParticipantIn(enterprise, procure-

ment), respectively. The assumptions behind these LPDs are that a random person is

rarely a member of a committee and a random enterprise is rarely a participant in a

procurement. All other RVs assume a uniform distribution, including hasProcuremen-

tOwner(procurement) and hasWinnerOfProcurement(procurement), which are uniform

over all possible instances of PublicAgency and Enterprise, respectively.

251

Listing B.5: LPD for isMemberOfCommittee(person, procurement)

1 [
2 t rue = .0001 ,
3 f a l s e = .9999
4]

Listing B.6: LPD for hasValue(procurement)
1 [
2 Lower10k = . 2 ,
3 From10kTo100k = . 2 ,
4 From100kTo500k = . 2 ,
5 From500kTo1000k = . 2 ,
6 Greater1000k = .2
7]

Listing B.7: LPD for isProcurementFinished(procurement)
1 [
2 t rue = . 5 ,
3 f a l s e = . 5
4]

Listing B.8: LPD for isParticipantIn(enterprise, procurement)

1 [
2 t rue = .0001 ,
3 f a l s e = .9999
4]

252

Figure B.3: MFrag Enterprise Information.

Figure B.3 presents the Enterprise Information MFrag. In it we have RVs associated

to the class Enterprise. Listings B.9 and B.10 present the LPDs for the RVs, isRe-

sponsibleFor(person, enterprise) and isSuspended(enterprise), respectively. The

assumptions behind these LPDs are that a random person is rarely a the owner of an en-

terprise and a random enterprise is rarely suspended from bidding in public procurements.

Listing B.9: LPD for isResponsibleFor(person, enterprise)

1 [
2 t rue = .0001 ,
3 f a l s e = .9999
4]

Listing B.10: LPD for isSuspended(enterprise)
1 [
2 t rue = .0001 ,
3 f a l s e = .9999
4]

253

Figure B.4: MFrag Front of Enterprise.

Figure B.4 presents the Front of Enterprise MFrag. Listings B.9 presents the LPD for

the RV isFrontFor(person, enterprise). The assumption behind this LPD is that if

the enterprise won a procurement of high value, but the owner of the enterprise does not

make a lot of money and/or does not have a high education level, then this person is more

likely to be a front for this enterprise.

Listing B.11: LPD for isFrontFor(person, enterprise)

1 i f any procurement have (hasValue = From100kTo500k) [
2 i f any person have (hasAnnualIncome = Lower10k | hasEducat ionLevel =

NoEducation) [
3 t rue = . 9 ,
4 f a l s e = . 1
5] e l s e i f any person have (hasAnnualIncome = From10kTo30k |

hasEducat ionLevel = MiddleSchool) [
6 t rue = . 6 ,
7 f a l s e = . 4
8] e l s e [
9 t rue = .0001 ,

10 f a l s e = .9999
11]
12] e l s e i f any procurement have (hasValue = From500kTo1000k) [

254

13 i f any person have (hasAnnualIncome = Lower10k | hasEducat ionLevel =
NoEducation) [

14 t rue = .95 ,
15 f a l s e = .05
16] e l s e i f any person have (hasAnnualIncome = From10kTo30k |

hasEducat ionLevel = MiddleSchool) [
17 t rue = . 8 ,
18 f a l s e = . 2
19] e l s e i f any person have (hasAnnualIncome = From30kTo60k |

hasEducat ionLevel = HighSchool) [
20 t rue = . 6 ,
21 f a l s e = . 4
22] e l s e [
23 t rue = .0001 ,
24 f a l s e = .9999
25]
26] e l s e i f any procurement have (hasValue = Greater1000k) [
27 i f any person have (hasAnnualIncome = Lower10k | hasEducat ionLevel =

NoEducation) [
28 t rue = .99 ,
29 f a l s e = .01
30] e l s e i f any person have (hasAnnualIncome = From10kTo30k |

hasEducat ionLevel = MiddleSchool) [
31 t rue = . 9 ,
32 f a l s e = . 1
33] e l s e i f any person have (hasAnnualIncome = From30kTo60k |

hasEducat ionLevel = HighSchool) [
34 t rue = . 8 ,
35 f a l s e = . 2
36] e l s e i f any person have (hasAnnualIncome = From60kTo100k |

hasEducat ionLevel = Undergraduate) [
37 t rue = . 6 ,
38 f a l s e = . 4
39] e l s e [
40 t rue = .0001 ,
41 f a l s e = .9999
42]
43] e l s e [
44 t rue = .0001 ,
45 f a l s e = .9999
46]

255

Figure B.5: MFrag Exists Front in Enterprise.

Figure B.5 presents the Exists Front in Enterprise MFrag. Listings B.12 presents the

LPD for the RV existsFrontInEnterprise(enterprise). The assumption behind this

LPD is that if the enterprise has at least one owner that is a front, then there is a front

in this enterprise. Notice this RV represents in fact an existential formula. However, due

to limitations in UnBBayes’ current version, this existential formula was implemented as a

regular RV using the expressiveness of the LPD grammar.

Listing B.12: LPD for existsFrontInEnterprise(enterprise)
1 i f any person . e n t e r p r i s e have (i sFrontFor = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f a l l person . e n t e r p r i s e have (i sFrontFor = f a l s e) [
5 t rue = 0 ,
6 f a l s e = 1
7] e l s e [
8 t rue = .0001 ,
9 f a l s e = .9999

10]

256

Figure B.6: MFrag Related Participant Enterprises.

Listing B.13: LPD for hasRelatedParticipants(procurement)
1 i f any person1 . person2 have (i sRe l a t ed = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f a l l person1 . person2 have (i sRe l a t ed = f a l s e) [
5 t rue = 0 ,
6 f a l s e = 1
7] e l s e [
8 t rue = .0001 ,
9 f a l s e = .9999

10]

Figure B.6 presents the Related Participant Enterprise MFrag. Listings B.13 presents

the LPD for the RV hasRelatedParticipants(procurement). The assumption behind

this LPD is that if any two enterprises participating in this procurement have owners that

257

are related, then this procurement has related participants. Notice this RV could also be

represented as a formula. However, due to limitations in UnBBayes’ current version, this

existential formula was implemented as a regular RV using the expressiveness of the LPD

grammar.

Figure B.7: MFrag Member Related to Participant.

Listing B.14: LPD for hasMemberRelatedToParticipant(procurement)
1 i f any person . member have (i sRe l a t ed = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f a l l person . member have (i sRe l a t ed = f a l s e) [
5 t rue = 0 ,
6 f a l s e = 1
7] e l s e [
8 t rue = .0001 ,
9 f a l s e = .9999

10]

Figure B.7 presents the Member Related to Participant MFrag. Listings B.14 presents

the LPD for the RV hasMemberRelatedToParticipant(procurement). The assumption

behind this LPD is that if any member of the procurement is related to any owner of any

258

enterprise participating in this procurement, then this procurement has a member related

to a participant. Notice this RV could also be represented as a formula. However, due

to limitations in UnBBayes’ current version, this existential formula was implemented as a

regular RV using the expressiveness of the LPD grammar.

Figure B.8: MFrag Competition Compromised.

Figure B.8 presents the Competition Compromised MFrag. Listings B.15 presents the

LPD for the RV isCompetitionCompromised(procurement). The assumptions behind

this LPD are that: if there exists a front in any of the participating enterprises, or if

the participating enterprises are related, or if any member is related to any participating

enterprise, then the competition is more likely to be compromised; and that if these things

happen together, the probability of having competition compromised is even higher.

259

Listing B.15: LPD for isCompetitionCompromised(procurement)
1 i f any procurement have (hasRe la t edPar t i c ipant s = true &

hasMemberRelatedToParticipant = true) [
2 i f any e n t e r p r i s e have (ex i s t sF ron t InEnt e rp r i s e = true) [
3 t rue = . 9 ,
4 f a l s e = . 1
5] e l s e [
6 t rue = . 8 ,
7 f a l s e = . 2
8]
9] e l s e i f any procurement have (hasRe la t edPar t i c ipant s = true |

hasMemberRelatedToParticipant = true) [
10 i f any e n t e r p r i s e have (ex i s t sF ron t InEnt e rp r i s e = true) [
11 t rue = . 8 ,
12 f a l s e = . 2
13] e l s e [
14 t rue = . 6 ,
15 f a l s e = . 4
16]
17] e l s e i f any e n t e r p r i s e have (ex i s t sF ron t InEnt e rp r i s e = true) [
18 t rue = . 6 ,
19 f a l s e = . 4
20] e l s e [
21 t rue = .0001 ,
22 f a l s e = .9999
23]

Figure B.9 presents the Owns Suspended Enterprise MFrag. Listings B.16 presents the

LPD for the RV ownsSuspendedEnterprise(person). The assumption behind this LPD

is that if a person is owner of at least one enterprise suspended from bidding in public

procurements, then this person owns a suspended enterprise. Notice this RV could also be

represented as a formula. However, due to limitations in UnBBayes’ current version, this

existential formula was implemented as a regular RV using the expressiveness of the LPD

grammar.

260

Figure B.9: MFrag Owns Suspended Enterprise.

Listing B.16: LPD for ownsSuspendedEnterprise(person)
1 i f any e n t e r p r i s e have (isSuspended = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f any e n t e r p r i s e have (isSuspended = f a l s e) [
5 t rue = 0 ,
6 f a l s e = 1
7] e l s e [
8 t rue = .001 ,
9 f a l s e = .999

10]

Figure B.10 presents the Judgment History MFrag. In it we have RVs associated to

the judgement (criminal and administrative) history of a Person. Listings B.17, B.18, and

B.19 present the LPDs for the RVs, hasCriminalHistory(person), hasAdministrative-

History(person), and hasCleanHistory(person), respectively. The assumptions behind

these LPDs are that a person is more likely to have never been investigated, and the prob-

ability of a person having a clean history is lower if he/she was never investigated, higher

if he/she was investigated, and extremely high if he/she was convicted2.
2Maybe a better name for this node would be isTrustworthy. Nevertheless, the idea is that if someone

261

Figure B.10: MFrag Judgment History.

Listing B.17: LPD for hasCriminalHistory(person)
1 [
2 Convicted = .0001 ,
3 Inv e s t i g a t ed = .001 ,
4 Never Inves t i ga ted = .9989
5]

Listing B.18: LPD for hasAdministrativeHistory(person)
1 [
2 Convicted = .0001 ,
3 Inv e s t i g a t ed = .001 ,
4 Never Inves t i ga ted = .9989
5]

was investigated and/or convicted then he might not be a good candidate for being part of a procurement
committee.

262

Listing B.19: LPD for hasCleanHistory(person)
1 i f any person have (hasCr imina lHis tory = Convicted | hasAdmin i s t ra t iveHi s to ry

= Convicted) [
2 t rue = .01 ,
3 f a l s e = .99
4] e l s e i f any person have (hasCr imina lHis tory = Inve s t i g a t ed |

hasAdmin i s t ra t iveHi s to ry = Inve s t i g a t ed) [
5 t rue = .60 ,
6 f a l s e = .40
7] e l s e [
8 t rue = .99 ,
9 f a l s e = .01

10]

Figure B.11: MFrag Related to Previous Participants.

Figure B.11 presents the Related to Previous Participants MFrag. Listings B.20 presents

the LPD for the RV wasRelatedToPreviousParticipants(member). The assumption be-

hind this LPD is that if a person was related to any owner of any enterprise participating in

any previous procurement (procurement that is finished), when this person was a member

263

of that procurement, then this member was related to previous participants. Notice this RV

could also be represented as a formula. However, due to limitations in UnBBayes’ current

version, this existential formula was implemented as a regular RV using the expressiveness

of the LPD grammar.

Listing B.20: LPD for wasRelatedToPreviousParticipants(member)
1 i f any member . person have (i sRe l a t ed = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f a l l member . person have (i sRe l a t ed = f a l s e) [
5 t rue = 0 ,
6 f a l s e = 1
7] e l s e [
8 t rue = .0001 ,
9 f a l s e = .9999

10]

Figure B.12: MFrag Suspicious Committee.

Figure B.12 presents the Suspicious Committee MFrag. Listings B.21 presents the LPD

for the RV hasSuspiciousCommittee(procurement). The assumptions behind this LPD

264

are that: if any committee member of this procurement does not have a clean history, or

if any committee member was related to previous participants, then the committee is more

likely to be suspicious; and that if these things happen together, the probability of having

suspicious committee is even higher.

Listing B.21: LPD for hasSuspiciousCommittee(procurement)
1 i f any member have (wasRelatedToPrev iousPart ic ipants = true) [
2 i f any member have (hasCleanHistory = f a l s e) [
3 t rue = . 9 ,
4 f a l s e = . 1
5] e l s e [
6 t rue = . 7 ,
7 f a l s e = . 3
8]
9] e l s e i f any member have (wasRelatedToPrev iousPart ic ipants = f a l s e) [

10 i f any member have (hasCleanHistory = f a l s e) [
11 t rue = . 7 ,
12 f a l s e = . 3
13] e l s e [
14 t rue = .001 ,
15 f a l s e = .999
16]
17] e l s e [
18 t rue = .001 ,
19 f a l s e = .999
20]

Figure B.13: MFrag Suspicious Procurement.

265

Figure B.13 presents the Suspicious Procurement MFrag. Listings B.22 presents the

LPD for the RV isSuspiciousProcurement(procurement). The assumptions behind this

LPD are that: if the competition is compromised, or if any owner of a participating enter-

prise owns a suspended enterprise, or if committee of this procurement is suspicious, then

the procurement is more likely to be suspicious; and that if these things happen together,

the probability of having suspicious procurement is even higher.

Listing B.22: LPD for isSuspiciousProcurement(procurement)
1 i f any procurement have (isCompetitionCompromised = true &

hasSuspiciousCommittee = true) [
2 i f any person have (ownsSuspendedEnterprise = true) [
3 t rue = .90 ,
4 f a l s e = .10
5] e l s e [
6 t rue = .80 ,
7 f a l s e = .20
8]
9] e l s e i f any procurement have (isCompetitionCompromised = true |

hasSuspiciousCommittee = true) [
10 i f any person have (ownsSuspendedEnterprise = true) [
11 t rue = .80 ,
12 f a l s e = .20
13] e l s e [
14 t rue = .70 ,
15 f a l s e = .30
16]
17] e l s e [
18 i f any person have (ownsSuspendedEnterprise = true) [
19 t rue = .70 ,
20 f a l s e = .30
21] e l s e [
22 t rue = .0001 ,
23 f a l s e = .9999
24]
25]

B.2 Probabilistic Ontology for Maritime Domain Awareness

All the assumptions for the RVs created and for defining their LPD will be described for

every MFrag designed for the MTheory that represents the PO for the MDA implemented.

In each MFrag, the resident RVs are shown as yellow rounded rectangles; the input RVs are

266

shown as gray trapezoids; the context RVs are shown as green pentagons.

B.2.1 Fist Iteration

In order to make reference easier, the rules defined during Analysis & Design in Chapter 5

Subsection 5.2.1 will be repeated here. The rules are:

1. A ship is of interest if and only if it has a terrorist crew member;

2. If a crew member is related to a terrorist, then it is more likely that he is also a

terrorist;

3. If a crew member is a member of a terrorist organization, then it is more likely that

he is a terrorist;

4. If an organization has a terrorist member, it is more likely that it is a terrorist orga-

nization;

5. A ship of interest is more likely to have an unusual route;

6. A ship of interest is more likely to meet other ships for trading illicit cargo;

7. A ship that meets other ships to trade illicit cargo is more likely to have an unusual

route;

8. A ship of interest is more likely to have an evasive behavior;

9. A ship with evasive behavior is more likely to have non responsive electronic equip-

ment;

10. A ship with evasive behavior is more likely to deploy an ECM;

11. A ship might have non responsive electronic equipment due to working problems;

12. A ship that is within radar range of a ship that deployed an ECM might be able to

detect the ECM, but not who deployed it.

267

The primary goal is shown in the Ship of Interest MFrag in Figure B.14. This MFrag

has only one resident node, isShipOfInterest(ship). The only context node present in

this MFrag define the type for the variable ship, which is the Ship entity. The input node

hasTerroristCrew(ship) is defined in another MFrag, which will be explained later.

Figure B.14: MFrag for identifying the ship of interest.

The LPD for the resident node isShipOfInterest(ship) follows rule 1, i.e., if the ship

has a terrorist crew, then it is a ship of interest for sure, otherwise, it is unlikely, which was

considered as 0.1%. See Listing B.23 for the complete LPD.

Listing B.23: LPD for isShipOfInterest(ship)
1 i f any sh ip have (hasTerror i s tCrew = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The question related to the identification of a terrorist crew member is presented in the

Has Terrorist Crew, Terrorist Person, and Ship Characteristics MFrags in Figure B.15. The

268

context nodes on all these MFrags refer only to the types of the variables, where person,

ship, and org, refer to Person, Ship, and Organization, respectively.

Figure B.15: MFrags for identifying a terrorist crew member.

The LPD for the resident node isCrewMember(person, ship) has a prior probability

of 0.5% of being true, i.e., 5 out of 1000 people are crew members of a given ship. In reality,

given all people in the world, this ratio might be much smaller, however, we assume that we

are dealing with a subset of people that is more likely to be crew members. See Listing B.24

for the complete LPD.

269

Listing B.24: LPD for isCrewMember(person, ship)

1 [
2 t rue = .005 ,
3 f a l s e = .995
4]

The LPD for the resident node hasTerroristCrew(ship) follows rule 1. Here we just

have a logical statement saying that the ship has a terrorist crew if and only if a person is a

terrorist and also a crew member of this ship. If no information about its parents is known,

the default distribution is used. In this case, we assume that it is unlikely that a ship has

a terrorist crew, which is interpreted as 0.1%. See Listing B.25 for the complete LPD.

Listing B.25: LPD for hasTerroristCrew(ship)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 i f any person . sh ip have (isCrewMember = true) [
3 t rue = 1 ,
4 f a l s e = 0
5] e l s e [
6 t rue = 0 ,
7 f a l s e = 1
8]
9] e l s e i f any person have (i sTe r r o r i s tP e r s on = f a l s e) [

10 i f any person . sh ip have (isCrewMember = true) [
11 t rue = 0 ,
12 f a l s e = 1
13] e l s e [
14 t rue = 0 ,
15 f a l s e = 1
16]
17] e l s e [
18 t rue = .001 ,
19 f a l s e = .999
20]

The LPD for the resident node isRelatedToAnyTerrorist(person) has a prior proba-

bility of 0.1% of being true, which means that a person is unlikely to be related to a terrorist.

This information is provided by a social network system by looking at the relation isRelat-

edTo and classes Person and Terrorist presented on our design. If there is one Terrorist

270

who is related to a person, then isRelatedToAnyTerrorist(person) is true. So we sim-

plified our PO by just representing the relation isRelatedToAnyTerrorist(person). See

Listing B.26 for the complete LPD.

Listing B.26: LPD for isRelatedToAnyTerrorist(person)
1 [
2 t rue = .001 ,
3 f a l s e = .999
4]

The LPD for the resident node isTerroristPerson(person) follows rule 2. If person

is related to any terrorist, then this person is more likely to be a terrorist. Otherwise, it is

unlikely that this person is a terrorist. Here more likely is interpreted as 70% and unlikely

as 0.1%. See Listing B.58 for the complete LPD.

Listing B.27: LPD for isTerroristPerson(person)
1 i f any person have (i sRe latedToAnyTerror i s t = true) [
2 t rue = . 7 ,
3 f a l s e = . 3
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The LPD for the resident node isMemberOfOrganization(person, org) has a prior

probability of 1%, which means that one in every one hundred people is a member of a given

organization. Again, this might be a much smaller ratio in reality, but here we assume we are

dealing with a subset of people that are more likely to be members of a given organization.

See Listing B.28 for the complete LPD.

Listing B.28: LPD for isMemberOfOrganization(person, org)

1 [
2 t rue = .01 ,
3 f a l s e = .99
4]

271

The LPD for the resident node isTerroristOrganization(org) follows rules 3 and 4.

If there is a person that is a terrorist and is also a member of a given organization, then this

organization is likely to be a terrorist organization, otherwise, it is unlikely to be a terrorist

organization. Here, we assume likely to be 90% and unlikely to be 0.1%. See Listing B.29

for the complete LPD.

Listing B.29: LPD for isTerroristOrganization(org)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 i f any person . org have (isMemberOfOrganization = true) [
3 t rue = . 9 ,
4 f a l s e = . 1
5] e l s e [
6 t rue = .001 ,
7 f a l s e = .999
8]
9] e l s e [

10 t rue = .001 ,
11 f a l s e = .999
12]

The question related to the identification of unusual routes is presented on the Unusual

Route and Meeting MFrags in Figure B.16. In both MFrags there is two context nodes to

define the types of the variables ship1 and ship2, which is entity Ship. Besides that, there

is one context node that defined that ship1 has to be di↵erent than ship2.

272

Figure B.16: MFrags for identifying the ship with unusual route.

The LPD for the resident node areMeeting(ship1, ship2) follows rule 6. If ship is a

ship of interest, then it is more likely to meet other ships for trading illicit cargo. Otherwise,

it is unlikely that this ship will meet other ships. In this case, more likely is interpreted as

75% and unlikely as 0.1%. See Listing B.30 for the complete LPD.

Listing B.30: LPD for areMeeting(ship1, ship2)

1 i f any sh ip1 have (i s Sh i pO f I n t e r e s t = true) [
2 t rue = .75 ,
3 f a l s e = .25
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The LPD for the resident node areMeetingReport(ship1, ship2) does not follow a

specific rule, however, it is in associated to the fact that receiving a report about an event

is not the same as the event itself (see [119] for more details), i.e. even though someone

states that two ships met, it might be the case that whoever gave the report was mistaken.

These issues are not addressed in detail in this project, but we have assumed that when

273

two ships meet, there is a 90% chance that the report will say these two ships met, and if

two ships have not met, there is a 80% chance that the report will say these two ships have

not met. See Listing B.31 for the complete LPD.

Listing B.31: LPD for areMeetingReport(ship1, ship2)

1 i f any sh ip1 . sh ip2 have (areMeeting = true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e [
5 t rue = . 2 ,
6 f a l s e = . 8
7]

The LPD for the resident node hasUnusualRoute(ship1) follows rules 5 and 7. If ship

is of interest and is meeting other ships, then it is more likely the ship has an unusual route.

However, if ship is of interest but is not meeting other ships, then it is likely (but less than

the previous case) the ship has an unusual route. If ship is not of interest, then it does

not matter if it is meeting other ships. In this scenario, this ship is unlikely to be using an

unusual route. Here it is assumed more likely as 90%, likely as 75%, and unlikely as 0.1%.

See Listing B.32 for the complete LPD.

Listing B.32: LPD for hasUnusualRoute(ship1)
1 i f any sh ip1 have (i s Sh i pO f I n t e r e s t = true) [
2 i f any sh ip1 . sh ip2 have (areMeeting = true) [
3 t rue = . 9 ,
4 f a l s e = . 1
5] e l s e [
6 t rue = .75 ,
7 f a l s e = .25
8]
9] e l s e [

10 t rue = .001 ,
11 f a l s e = .999
12]

The LPD for the resident node hasUnusualRouteReport(ship1) does not follow a spe-

cific rule, however, it is in associated to the fact that receiving a report about an event

274

is not the same as the event itself, as in the case of areMeetingReport(ship1, ship2).

It is assumed that when the ship has an unusual route, there is a 90% chance that the

report will say the ship has an unusual route, and if the ship has a normal route, there is

an 80% chance that the report will say the ship has a normal route. See Listing B.33 for

the complete LPD.

Listing B.33: LPD for hasUnusualRouteReport(ship1)
1 i f any sh ip1 have (hasUnusualRoute = true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e [
5 t rue = . 2 ,
6 f a l s e = . 8
7]

The question related to identification of evasive behavior is shown in the Evasive Behav-

ior, Electronics Status, and Radar MFrags in Figure B.17. As in the previous MFrags, the

variables ship, ship1, and ship2 have their type defined by their context node as entity

Ship. In Radar and Evasive Behavior MFrags, ship1 and ship2 are defined as two di↵erent

ships. Finally, the relations in Evasive Behavior MFrag are only valid when ship1 is within

the radar range of ship2.

275

Figure B.17: MFrags for identifying the ship with evasive behavior.

The LPD for the resident node isWithinRadarRange(ship1, ship2) has a prior of

0.5% of having ship1 in range of ship2s radar. Again, this is just a subjective analysis

and it is not intended to represent a real frequency. This is also a simplification from the

design we had. Some external system is going to compare the position of ship1 with the

position of ship2 and verify if this distance is smaller or equal to ship2s radar range. See

Listing B.34 for the complete LPD.

Listing B.34: LPD for isWithinRadarRange(ship1, ship2)

1 [
2 t rue = .005 ,
3 f a l s e = .995
4]

The LPD for the resident node hasEvasiveBehavior(ship1) follows rule 8. If ship1

is of interest, then it is more likely to have an evasive behavior. Otherwise it is unlikely

to have an evasive behavior. It is assumed more likely as 75% and unlikely as 0.1% in this

276

case. See Listing B.35 for the complete LPD.

Listing B.35: LPD for hasEvasiveBehavior(ship1)
1 i f any sh ip1 have (i s Sh i pO f I n t e r e s t = true) [
2 t rue = .75 ,
3 f a l s e = .25
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The LPD for the resident node hasDeployedECM(ship1) follows rule 10. If ship1 has

evasive behavior, then it is more likely to deploy an ECM. Otherwise, it is unlikely to deploy

an ECM. It is assumed more likely as 75% and unlikely as 0.1% in this case. See Listing B.36

for the complete LPD.

Listing B.36: LPD for hasDeployedECM(ship1)
1 i f any sh ip1 have (hasEvas iveBehavior = true) [
2 t rue = .75 ,
3 f a l s e = .25
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The LPD for the resident node hasDetectedECM(ship2) follows rule 12. If a ship1 that

deployed an ECM is within radar range of ship2, then it is likely that ship2 will detect

ECM, but not who deployed it. Otherwise, it is unlikely that ship2 will detect an ECM. It

is assumed likely as 90% and unlikely as 0.1% in this case. See Listing B.37 for the complete

LPD.

277

Listing B.37: LPD for hasDetectedECM(ship2)
1 i f any sh ip1 have (hasDeployedECM = true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e [
5 t rue = .001 ,
6 f a l s e = .999
7]

The LPD for the resident node isElectronicsWorking(ship) has a prior of 95% of being

working, which means that it is likely that the electronics in a ship is working. Here we

simplified our model by grouping all electronics equipment and saying that if one is not

working, then this RV should be false, otherwise, it is true. This is di↵erent than our

design, which has a property isWorking for every electronic. See Listing B.38 for the

complete LPD.

Listing B.38: LPD for isElectronicsWorking(ship)
1 [
2 t rue = .95 ,
3 f a l s e = .05
4]

The LPD for the resident node hasResponsiveRadio(ship) follows rules 9 and 11. If

ship has an evasive behavior and the electronics is not working than it is very likely to

have non-responsive radio. However, if ship has an evasive behavior or the electronics is

not working, but not both, then it is likely to have non-responsive radio. In any other case,

it is very likely to have responsive radio. It is assumed very likely as 99% and likely as 90%,

in this case. See Listing B.39 for the complete LPD.

278

Listing B.39: LPD for hasResponsiveRadio(ship)
1 i f any sh ip have (hasEvas iveBehavior = true) [
2 i f any sh ip have (i sE l e c t ron i c sWork ing = f a l s e) [
3 t rue = .01 ,
4 f a l s e = .99
5] e l s e [
6 t rue = . 1 ,
7 f a l s e = . 9
8]
9] e l s e i f any sh ip have (hasEvas iveBehavior = f a l s e) [

10 i f any sh ip have (i sE l e c t ron i c sWork ing = f a l s e) [
11 t rue = . 1 ,
12 f a l s e = . 9
13] e l s e [
14 t rue = .99 ,
15 f a l s e = .01
16]
17] e l s e [
18 t rue = .99 ,
19 f a l s e = .01
20]

The LPD for the resident node hasResponsiveAIS(ship) follows rules 9 and 11. If

ship has an evasive behavior and the electronics is not working than it is very likely to

have non-responsive AIS. However, if ship has an evasive behavior or the electronics is not

working, but not both, then it is likely to have non-responsive AIS. In any other case, it is

very likely to have responsive AIS. It is assumed very likely as 99% and likely as 90%, in

this case. See Listing B.40 for the complete LPD.

279

Listing B.40: LPD for hasResponsiveAIS(ship)
1 i f any sh ip have (hasEvas iveBehavior = true) [
2 i f any sh ip have (i sE l e c t ron i c sWork ing = f a l s e) [
3 t rue = .01 ,
4 f a l s e = .99
5] e l s e [
6 t rue = . 1 ,
7 f a l s e = . 9
8]
9] e l s e i f any sh ip have (hasEvas iveBehavior = f a l s e) [

10 i f any sh ip have (i sE l e c t ron i c sWork ing = f a l s e) [
11 t rue = . 1 ,
12 f a l s e = . 9
13] e l s e [
14 t rue = .99 ,
15 f a l s e = .01
16]
17] e l s e [
18 t rue = .99 ,
19 f a l s e = .01
20]

B.2.2 Second Iteration

In order to make reference easier, the rules defined during Analysis & Design in Chapter 5

Subsection 5.2.2 will be repeated here. The rules are:

1. A ship is of interest if and only if it has a terrorist crew member plan;

2. A ship has a terrorist plan if and only if it has terrorist crew member or if it was

hijacked;

3. If a crew member is related to a terrorist, then it is more likely that he is also a

terrorist ;

4. If a crew member is a member of a terrorist organization, then it is more likely that

he is a terrorist ;

5. If an organization has a terrorist member, it is more likely that it is a terrorist orga-

nization;

280

6. A ship of interest is more likely to have an unusual route, independent of its intention;

7. A ship of interest, with plans of exchanging illicit cargo, is more likely to meet other

ships;

8. A ship that meets other ships to trade illicit cargo is more likely to have an unusual

route;

9. A fishing ship is more likely to have a normal change in its destination (e.g., to sell

the fish caught) than merchant ships;

10. A normal change in destination will probably change the usual route of the ship;

11. A ship of interest, with plans of exchanging illicit cargo, is more likely to have an

evasive behavior ;

12. A ship with evasive behavior is more likely to have non responsive electronic equip-

ment;

13. A ship might have non responsive electronic equipment due to maintenance problems;

14. A ship with evasive behavior is more likely to deploy an ECM;

15. A ship that is within radar range of a ship that deployed an ECM might be able to

detect the ECM, but not who deployed it;

16. A ship of interest, with plans of exchanging illicit cargo, is more likely to have an

erratic behavior;

17. A ship with normal behavior usually does not have the crew visible on the deck;

18. A ship with erratic behavior usually has the crew visible on the deck;

19. If the ship has some equipment failure, it is more likely to see the crew on the deck

in order to fix the problem;

281

20. A ship of interest, independent of its intention, is more likely to have an aggressive

behavior;

21. A ship with aggressive behavior is more likely to have weapons visible and to jettison

cargo;

22. A ship with normal behavior is not likely to have weapons visible nor to jettison cargo.

Rules inherited from the first iteration are in italic. Items crossed out refer to rules that

were considered in the first iteration, but now they have been changed or removed.

This Section will only describe the MFrags and LPDs that have been changed or added

in the second iteration. Please refer to Section B.2.1 for those that remain the same.

Figure B.18 presents the MTheory created in the second iteration with information on

which MFrags are the same, which are new, and which were changed.

Figure B.19 presents the Ship Characteristics MFrag. It adds the RVs hasTypeOf-

Ship(ship) and isHijacked(ship), which have their LPDs described by Listings B.41

and B.42, respectively. The assumptions behind these LPDs are that a ship is slightly more

likely to be a fishing ship than a merchant ship and a ship is unlikely to be hijacked.

Figure B.19: Ship Characteristics MFrag.

282

F
ig

ur
e

B
.1

8:
M

T
he

or
y

cr
ea

te
d

in
se

co
nd

it
er

at
io

n.

283

Listing B.41: LPD for hasTypeOfShip(ship)
1 [
2 Fi sh ing = . 6 ,
3 Merchant = .4
4]

Listing B.42: LPD for isHijacked(ship)
1 [
2 t rue = .05 ,
3 f a l s e = .95
4]

Figure B.20 presents the Terrorist Plan MFrag. Listing B.43 presents the LPD for

the RV hasTerroristPlan(ship). The assumption behind this LPD is that a ship has a

terrorist plan if and only if it has terrorist crew member or if it was hijacked (rule 2).

Figure B.20: Terrorist Plan MFrag.

284

Listing B.43: LPD for hasTerroristPlan(ship)
1 i f any sh ip have (hasTerror i s tCrew = true | i sH i j a ck ed = true) [
2 Exchange I l l i c i tCargoP lan = . 7 ,
3 BombPortPlan = . 3 ,
4 NoPlan = 0
5] e l s e [
6 Exchange I l l i c i tCargoP lan = 0 ,
7 BombPortPlan = 0 ,
8 NoPlan = 1
9]

Figure B.21 presents the Bomb Port Plan MFrag. Listing B.44 presents the LPD for the

RV hasBombPortPlan(ship). Here we just have a deterministic rule saying that if ship

has the terrorist plan BombPortPlan, then the RV hasBombPortPlan(ship) is true.

Figure B.21: Bomb Port Plan MFrag.

Listing B.44: LPD for hasBombPortPlan(ship)
1 i f any sh ip have (hasTer ro r i s tP lan = BombPortPlan) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = 0 ,
6 f a l s e = 1
7]

285

Figure B.22 presents the Exchange Illicit Cargo Plan MFrag. Listings B.45 and B.46

present the LPDs for the RVs hasBombPortPlan(ship) and hasExchangeIllicitCar-

goPartition(ship), respectively. Here we just have a deterministic rule saying that if

ship has the terrorist plan ExchangeIllicitCargoPlan, then the RV hasExchangeIllic-

itCargoPlan(ship) is true. The other node defines a exchange illicit cargo partition based

on the type of the ship.

Figure B.22: Exchange Illicit Cargo Plan MFrag.

Listing B.45: LPD for hasExchangeIllicitCargoPlan(ship)
1 i f any sh ip have (hasTer ro r i s tP lan = Exchange I l l i c i tCargoP lan) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = 0 ,
6 f a l s e = 1
7]

286

Listing B.46: LPD for hasExchangeIllicitCargoPartition(ship)
1 i f any sh ip have (hasExchange I l l i c i tCargoPlan = true) [
2 i f any sh ip have (hasTypeOfShip = Fish ing) [
3 Exchange I l l i c i tCargoPlanForF i sh ingSh ip = 1 ,
4 ExchangeI l l i c i tCargoPlanForMerchantShip = 0 ,
5 NoPlan = 0
6] e l s e [
7 Exchange I l l i c i tCargoPlanForF i sh ingSh ip = 0 ,
8 ExchangeI l l i c i tCargoPlanForMerchantShip = 1 ,
9 NoPlan = 0

10]
11] e l s e [
12 Exchange I l l i c i tCargoPlanForF i sh ingSh ip = 0 ,
13 ExchangeI l l i c i tCargoPlanForMerchantShip = 0 ,
14 NoPlan = 1
15]

Figure B.23 presents the Ship of Interest MFrag. Listing B.47 presents the LPD for

the RV isShipOfInterest(ship). The assumption behind this LPD is that a ship is of

interest if and only if it has a terrorist plan (rule 1).

Figure B.23: Ship of Interest MFrag.

287

Listing B.47: LPD for isShipOfInterest(ship)
1 i f any sh ip have (hasTer ro r i s tP lan = NoPlan) [
2 t rue = 0 ,
3 f a l s e = 1
4] e l s e [
5 t rue = 1 ,
6 f a l s e = 0
7]

Figure B.24 presents the Meeting MFrag. Listing B.48 presents the LPD for the RV

areMeeting(ship). The assumption behind this LPD is that a ship of interest, with plans

of exchanging illicit cargo, is more likely to meet other ships (rule 7).

Figure B.24: Meeting MFrag.

288

Listing B.48: LPD for areMeeting(ship1, ship2)

1 i f any sh ip1 have (ha sExchange I l l i c i tCa rgoPa r t i t i on = NoPlan) [
2 t rue = 0 ,
3 f a l s e = 1
4] e l s e [
5 t rue = 1 ,
6 f a l s e = 0
7]

Figure B.25: Unusual Route MFrag.

Figure B.25 presents the Unusual Route MFrag. Listings B.49 and B.50 present

the LPDs for the RVs hasNormalChangeInDestination(ship1) and hasUnusual-

Route(ship1), respectively. The assumptions behind these LPDs are that a fishing ship

is more likely to have a normal change in its destination (e.g., to sell the sh caught) than

merchant ships (rule 9), that a normal change in destination will probably change the usual

route of the ship (rule 10), that a ship of interest is more likely to have an unusual route,

independent of its intention (rule 6), and that a ship that meets other ships to trade illicit

289

cargo is more likely to have an unusual route (rule 8).

Listing B.49: LPD for hasNormalChangeInDestination(ship1)
1 i f any sh ip1 have (hasTypeOfShip = Fish ing) [
2 t rue = . 2 ,
3 f a l s e = . 8
4] e l s e i f any sh ip1 have (hasTypeOfShip = Merchant) [
5 t rue = .05 ,
6 f a l s e = .95
7] e l s e [
8 t rue = . 1 ,
9 f a l s e = . 9

10]

Listing B.50: LPD for hasUnusualRoute(ship1)
1 i f any sh ip1 have (hasBombPortPlan = true | hasNormalChangeInDestination =

true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e i f any sh ip1 . sh ip2 have (areMeeting = true) [
5 t rue = . 9 ,
6 f a l s e = . 1
7] e l s e [
8 t rue = .05 ,
9 f a l s e = .95

10]

Figure B.26 presents the Evasive Behavior MFrag. Listing B.51 presents the LPD for

the RV hasEvasiveBehavior(ship). The assumption behind this LPD is that a ship of

interest, with plans of exchanging illicit cargo, is more likely to have an evasive behavior

(rule 11).

290

Figure B.26: Evasive Behavior MFrag.

Listing B.51: LPD for hasEvasiveBehavior(ship)
1 i f any sh ip have (ha sExchange I l l i c i tCa rgoPa r t i t i on =

ExchangeI l l i c i tCargoPlanForMerchantShip) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = 0 ,
6 f a l s e = 1
7]

Figure B.27 presents the Aggressive Behavior MFrag. Listings B.52, B.53, and B.54

present the LPDs for the RVs hasAggressiveBehavior(ship), hasWeaponVisible(ship),

and isJettisoningCargo(ship), respectively. The assumptions behind these LPDs are

that a ship of interest, independent of its intention, is more likely to have an aggressive

behavior (rule 20), that a ship with aggressive behavior is more likely to have weapons

visible and to jettison cargo (rule 21), and that a ship with normal behavior is not likely to

have weapons visible nor to jettison cargo (rule 22).

291

Figure B.27: Aggressive Behavior MFrag.

Listing B.52: LPD for hasAggressiveBehavior(ship)
1 i f any sh ip have (˜ ha sExchange I l l i c i tCa rgoPa r t i t i on = NoPlan |

hasBombPortPlan = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = 0 ,
6 f a l s e = 1
7]

Listing B.53: LPD for hasWeaponVisible(ship)
1 i f any sh ip have (hasAggress iveBehavior = true) [
2 t rue = . 7 ,
3 f a l s e = . 3
4] e l s e [
5 t rue = .05 ,
6 f a l s e = .95
7]

292

Listing B.54: LPD for isJettisoningCargo(ship)
1 i f any sh ip have (hasAggress iveBehavior = true) [
2 t rue = .25 ,
3 f a l s e = .75
4] e l s e [
5 t rue = .05 ,
6 f a l s e = .95
7]

Figure B.28 presents the Erratic Behavior MFrag. Listings B.55, B.56, and B.57 present

the LPDs for the RVs hasErraticBehavior(ship), hasEquipmentFailure(ship), and

isCrewVisible(ship), respectively. The assumptions behind these LPDs are that a ship

of interest, with plans of exchanging illicit cargo, is more likely to have an erratic behavior

(rule 16), that a ship with normal behavior usually does not have the crew visible on the

deck (rule 17), that a ship with erratic behavior usually has the crew visible on the deck

(rule 18), and that if the ship has some equipment failure, it is more likely to see the crew

on the deck in order to fi

x the problem (rule 19).

Figure B.28: Erratic Behavior MFrag.

293

Listing B.55: LPD for hasErraticBehavior(ship)
1 i f any sh ip have (ha sExchange I l l i c i tCa rgoPa r t i t i on =

ExchangeI l l i c i tCargoPlanForMerchantShip) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e [
5 t rue = 0 ,
6 f a l s e = 1
7]

Listing B.56: LPD for hasEquipmentFailure(ship)
1 [
2 t rue = .05 ,
3 f a l s e = .95
4]

Listing B.57: LPD for isCrewVisible(ship)
1 i f any sh ip have (hasErrat i cBehav ior = true) [
2 i f any sh ip have (hasEquipmentFailure = true) [
3 t rue = .65 ,
4 f a l s e = .35
5] e l s e [
6 t rue = . 6 ,
7 f a l s e = . 4
8]
9] e l s e i f any sh ip have (hasErrat i cBehav ior = f a l s e) [

10 i f any sh ip have (hasEquipmentFailure = true) [
11 t rue = .45 ,
12 f a l s e = .55
13] e l s e [
14 t rue = .05 ,
15 f a l s e = .95
16]
17] e l s e [
18 t rue = .05 ,
19 f a l s e = .95
20]

294

B.2.3 Third Iteration

Although I am the first author of the paper published at Fusion 2011 on PO for MDA [18],

which most of this Subsection is based on, most of the research on the domain tackled in

this iteration was done by Richard Haberlin, who is co-author of the paper and SME on

the PROGNOS project. In fact, the first paper published by Haberlin and Costa about this

domain was [55]. However, the model presented in it was only a BN, not a probabilistic

ontology implemented using PR-OWL/MEBN.

In order to make reference easier, the rules defined during Analysis & Design in Chapter 5

Subsection 5.2.3 will be repeated here. The rules are:

1. Terrorist organization grouping;

(a) If a crew member is a member of a terrorist organization, then it is more likely

that he is a terrorist;

(b) If an organization has a terrorist member, it is more likely that it is a terrorist

organization.

2. Background influence grouping;

(a) For those who are terrorists, 100% of them chose to do so because of something

in their past. That is, no one was born a terrorist, or just woke up one day and

decided to be a terrorist. That is the easy case. For those who are not, 20% chose

not to become terrorists despite having some possible factor in their background

and 80% chose not to become a terrorist possibly because they have never been

exposed3.

(b) An individual is usually negatively a↵ected (leads him/her in becoming a terror-

ist) by having direct knowledge of someone either detained or killed by coalition

forces during the conflict;
3This rule and explanation was given by the SME.

295

(c) In the geographic area of interest, an estimated 2% of the population knows

someone who was killed as a result of OEF/OIF [94];

(d) In the geographic area of interest, approximately 2% of the population knows

someone detained as a result of coalition operations [94];

(e) Contrary to common perception, terrorists are predominantly married in keeping

with the teachings of the Quran [116]. And about half of the general population

in the target demographic is married.

3. Communication grouping;

(a) It is possible that a crew member may communicate with a terrorist without

being involved in terrorism due to non-terrorist a�liations or other relationships

that have some normal expectation of interaction;

(b) For each of the internet communications paths there is also the background usage

rate of 28.8% in the Middle East [5]. Because the data is not broken down for the

three internet transmission paths, this probability was applied equally to chat

room, email, and weblog methods of communication;

(c) Similarly, cellular telephone usage among the general population is assumed to

be 31.6% based on Egyptian subscriber rates [4];

(d) Given the availability of cellular technology and subscribing to the prioritiza-

tion, a probability of 90% is assigned to terrorists communicating using cellular

telephones;

(e) The transient nature and unfettered availability of chat room communications

makes it appealing to individuals who desire to remain nameless. A probability

of 85% is assigned to terrorists communicating through chat rooms;

(f) Email is the least desirable form of communication because it requires some

form of subscriber account. Even in the event that fictitious information is used

in creating such an account, an auditable trail may lead determined forces to

296

the originator. Still, it is a versatile means of communication and is assigned a

probability of 65% for terrorists;

(g) The anonymity associated with weblog interaction is very appealing to terrorists.

This path is similar to chat room communications, but is less transient in content

and can reach more subscribers simultaneously. For these reasons, a probability

of 80% is assigned to weblog communications.

4. Relationship grouping;

(a) Research shows that if a crew member has a relationship with terrorists, there

is a 68% chance that he has a friend who is a terrorist;

(b) Research shows that if a crew member has a relationship with terrorists, there

is a 14% chance that he is related to a terrorist.

5. Cluster grouping;

(a) It is assumed that all active terrorists fall into one of the terrorist cliques or their

subsidiaries described by Sageman [116];

(b) Contrary to popular thought, terrorists tend to not be unskilled drifters with no

options other than martyrdom;

(c) Many believe terrorist recruits to be uneducated simpletons who are easily per-

suaded by eloquent muftis who appeal to their sense of honor and perception of

persecution. In fact, the data indicate that the typical terrorist is more educated

than the average global citizen and is by far more educated than those in the

Middle East, North Africa, and Southeastern Asia regions [116];

(d) Terrorist from the clusters described by Sageman [116] are less likely to be of

lower class than other people from that demographic area.

Rules inherited from the first and second iterations are in italic. Items crossed out refer

to rules that were considered in the first and second iteration, but now they have been

changed or removed.

297

This Section will only describe the MFrags and LPDs that have been changed or added

in the third iteration. Please refer to Sections B.2.1 and B.2.2 for those that remain the

same. Figure B.29 presents the MTheory created in the third iteration. The Terrorist

Person MFrag was the only one that was changed. All others were added in this iteration.

Listing B.58 presents the LPD for the RV isTerroristPerson(person) from the Ter-

rorist Person MFrag. The assumptions behind this LPD and the other ones not shown here

because they are the same as in the previous iterations, are the rules in terrorist organization

grouping.

Listing B.58: LPD for isTerroristPerson(person)
1 [
2 t rue = .001 ,
3 f a l s e = .999
4]

Listings B.59, B.60, B.61, B.62, and B.63 present the LPDs for the RVs

communicatesWithTerrorist(person), usesCellular(person), usesEmail(person),

usesWeblog(person), and usesChatroom(person), respectively. These RVs are defined

in the Person Communications MFrag. The assumptions behind these LPDs are the rules

in communication grouping.

Listing B.59: LPD for communicatesWithTerrorist(person)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f any person have (i sTe r r o r i s tP e r s on = f a l s e) [
5 t rue = .001 ,
6 f a l s e = .999
7] e l s e [
8 t rue = .002 ,
9 f a l s e = .998

10]

298

F
ig

ur
e

B
.2

9:
M

T
he

or
y

cr
ea

te
d

in
th

ir
d

it
er

at
io

n.

299

Listing B.60: LPD for usesCellular(person)
1 i f any person have (communicatesWithTerrorist = true) [
2 t rue = . 9 ,
3 f a l s e = . 1
4] e l s e i f any person have (communicatesWithTerrorist = f a l s e) [
5 t rue = .316 ,
6 f a l s e = .684
7] e l s e [
8 t rue = .32 ,
9 f a l s e = .68

10]

Listing B.61: LPD for usesEmail(person)
1 i f any person have (communicatesWithTerrorist = true) [
2 t rue = .65 ,
3 f a l s e = .35
4] e l s e i f any person have (communicatesWithTerrorist = f a l s e) [
5 t rue = .288 ,
6 f a l s e = .712
7] e l s e [
8 t rue = .29 ,
9 f a l s e = .71

10]

Listing B.62: LPD for usesWeblog(person)
1 i f any person have (communicatesWithTerrorist = true) [
2 t rue = . 8 ,
3 f a l s e = . 2
4] e l s e i f any person have (communicatesWithTerrorist = f a l s e) [
5 t rue = .288 ,
6 f a l s e = .712
7] e l s e [
8 t rue = .29 ,
9 f a l s e = .71

10]

300

Listing B.63: LPD for usesChatroom(person)
1 i f any person have (communicatesWithTerrorist = true) [
2 t rue = .85 ,
3 f a l s e = .15
4] e l s e i f any person have (communicatesWithTerrorist = f a l s e) [
5 t rue = .288 ,
6 f a l s e = .712
7] e l s e [
8 t rue = .29 ,
9 f a l s e = .71

10]

Listings B.64, B.65, B.66, B.67, and B.68 present the LPDs for the RVs

hasInfluencePartition(person), hasFamilyStatus(person), hasOIForOEFInflu-

ence(person), knowsPersonKilledInOIForOEF(person), and knowsPersonImpri-

sionedInOIForOEF(person),

respectively. These RVs are defined in the Person Background Influences MFrag. The

assumptions behind these LPDs are the rules in background influence grouping.

Listing B.64: LPD for hasInfluencePartition(person)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 t rue = 1 ,
3 f a l s e = 0
4] e l s e i f any person have (i sTe r r o r i s tP e r s on = f a l s e) [
5 t rue = .20 ,
6 f a l s e = .80
7] e l s e [
8 t rue = .001 ,
9 f a l s e = .999

10]

Listing B.65: LPD for hasFamilyStatus(person)
1 i f any person have (ha s I n f l u en c ePa r t i t i o n = true) [
2 Married = .73 ,
3 S i ng l e = .27
4] e l s e i f any person have (ha s I n f l u en c ePa r t i t i o n = f a l s e) [
5 Married = .52 ,
6 S i ng l e = .48
7] e l s e [
8 Married = .60 ,
9 S i ng l e = .40]

301

Listing B.66: LPD for hasOIForOEFInfluence(person)
1 i f any person have (ha s I n f l u en c ePa r t i t i o n = true) [
2 t rue = .75 ,
3 f a l s e = .25
4] e l s e i f any person have (ha s I n f l u en c ePa r t i t i o n = f a l s e) [
5 t rue = .02 ,
6 f a l s e = .98
7] e l s e [
8 t rue = .001 ,
9 f a l s e = .999

10]

Listing B.67: LPD for knowsPersonKilledInOIForOEF(person)
1 i f any person have (hasOIForOEFInfluence = true) [
2 None = .98 ,
3 Few = .015 ,
4 Many = .005
5] e l s e i f any person have (hasOIForOEFInfluence = f a l s e) [
6 None = .999 ,
7 Few = .0008 ,
8 Many = .0002
9] e l s e [

10 None = .999 ,
11 Few = .0008 ,
12 Many = .0002
13]

Listing B.68: LPD for knowsPersonImprisionedInOIForOEF(person)
1 i f any person have (hasOIForOEFInfluence = true) [
2 None = .98 ,
3 Few = .015 ,
4 Many = .005
5] e l s e i f any person have (hasOIForOEFInfluence = f a l s e) [
6 None = .999 ,
7 Few = .0008 ,
8 Many = .0002
9] e l s e [

10 None = .999 ,
11 Few = .0008 ,
12 Many = .0002
13]

Listings B.69, B.70, and B.71 present the LPDs for the RVs

302

hasTerroristBeliefs(person), hasFriendshipWithTerrorist(person), and hasKin-

shipToTerrorist(person), respectively. These RVs are defined in the Person Relations

MFrag. The assumptions behind these LPDs are the rules in relationship grouping.

Listing B.69: LPD for hasTerroristBeliefs(person)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 t rue = .75 ,
3 f a l s e = .25
4] e l s e i f any person have (i sTe r r o r i s tP e r s on = f a l s e) [
5 t rue = .001 ,
6 f a l s e = .999
7] e l s e [
8 t rue = .002 ,
9 f a l s e = .998

10]

Listing B.70: LPD for hasFriendshipWithTerrorist(person)
1 i f any person have (h a sT e r r o r i s tB e l i e f s = true) [
2 None = .32 ,
3 Few = .40 ,
4 Many = .28
5] e l s e i f any person have (h a sT e r r o r i s tB e l i e f s = f a l s e) [
6 None = .999 ,
7 Few = .0008 ,
8 Many = .0002
9] e l s e [

10 None = .999 ,
11 Few = .0008 ,
12 Many = .0002]

Listing B.71: LPD for hasKinshipToTerrorist(person)
1 i f any person have (h a sT e r r o r i s tB e l i e f s = true) [
2 None = .86 ,
3 Few = .10 ,
4 Many = .04
5] e l s e i f any person have (h a sT e r r o r i s tB e l i e f s = f a l s e) [
6 None = .999 ,
7 Few = .0008 ,
8 Many = .0002
9] e l s e [

10 None = .999 ,
11 Few = .0008 ,
12 Many = .0002]

303

Listings B.72, B.73, B.74, B.75, and B.76 present the LPDs for the RVs hasClusterPar-

tition(person), hasNationality(person), hasEconomicStanding(person), hasEduca-

tionLevel(person), and hasOccupation(person), respectively. These RVs are defined in

the Person Cluster Associations MFrag. The assumptions behind these LPDs are the rules

in cluster grouping.

Listing B.72: LPD for hasClusterPartition(person)
1 i f any person have (i sTe r r o r i s tP e r s on = true) [
2 Cen t r a l S t a f f = . 18 ,
3 SoutheastAsia = .12 ,
4 MaghrebArab = .30 ,
5 CoreArab = .32 ,
6 Other = .08
7] e l s e i f any person have (i sTe r r o r i s tP e r s on = f a l s e) [
8 Cen t r a l S t a f f = 0 ,
9 SoutheastAsia = 0 ,

10 MaghrebArab = 0 ,
11 CoreArab = 0 ,
12 Other = 1
13] e l s e [Cen t r a l S t a f f = .00018 ,
14 SoutheastAsia = .00012 ,
15 MaghrebArab = .0003 ,
16 CoreArab = .00032 ,
17 Other = .99908]

Listing B.73: LPD for hasNationality(person)
1 i f any person have (ha sC lu s t e rPa r t i t i on = Cen t r a l S t a f f) [
2 Egypt = .63 ,
3 SaudiArabia = .09 ,
4 Kuwait = . 09 ,
5 Jordan = .06 ,
6 I raq = .03 ,
7 Sudan = .03 ,
8 Libya = .03 ,
9 Lebannon = .04 ,

10 Indones ia = 0 ,
11 Malaysia = 0 ,
12 Singapore = 0 ,
13 Pakistan = 0 ,
14 Ph i l i pp i n e s = 0 ,
15 France = 0 ,
16 Alge r i a = 0 ,
17 Morocco = 0 ,
18 Syr ia = 0 ,
19 Tunis ia = 0 ,
20 UAE = 0 ,

304

21 Yemen = 0 ,
22 Other = 0
23] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = SoutheastAsia) [
24 Egypt = 0 ,
25 SaudiArabia = 0 ,
26 Kuwait = 0 ,
27 Jordan = 0 ,
28 I raq = 0 ,
29 Sudan = 0 ,
30 Libya = 0 ,
31 Lebannon = 0 ,
32 Indones ia = . 57 ,
33 Malaysia = . 14 ,
34 Singapore = .10 ,
35 Pakistan = 0 ,
36 Ph i l i pp i n e s = .09 ,
37 France = 0 ,
38 Alge r i a = 0 ,
39 Morocco = 0 ,
40 Syr ia = 0 ,
41 Tunis ia = 0 ,
42 UAE = 0 ,
43 Yemen = 0 ,
44 Other = .10
45] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = MaghrebArab) [
46 Egypt = 0 ,
47 SaudiArabia = 0 ,
48 Kuwait = 0 ,
49 Jordan = 0 ,
50 I raq = 0 ,
51 Sudan = 0 ,
52 Libya = 0 ,
53 Lebannon = 0 ,
54 Indones ia = 0 ,
55 Malaysia = 0 ,
56 Singapore = 0 ,
57 Pakistan = 0 ,
58 Ph i l i pp i n e s = 0 ,
59 France = .34 ,
60 Alge r i a = . 28 ,
61 Morocco = .19 ,
62 Syr ia = 0 ,
63 Tunis ia = . 09 ,
64 UAE = 0 ,
65 Yemen = 0 ,
66 Other = .10
67] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = CoreArab) [
68 Egypt = .07 ,
69 SaudiArabia = .50 ,
70 Kuwait = . 07 ,
71 Jordan = 0 ,
72 I raq = 0 ,
73 Sudan = 0 ,
74 Libya = 0 ,
75 Lebannon = 0 ,
76 Indones ia = 0 ,

305

77 Malaysia = 0 ,
78 Singapore = 0 ,
79 Pakistan = .04 ,
80 Ph i l i pp i n e s = 0 ,
81 France = 0 ,
82 Alge r i a = 0 ,
83 Morocco = .07 ,
84 Syr ia = . 04 ,
85 Tunis ia = 0 ,
86 UAE = .04 ,
87 Yemen = .07 ,
88 Other = .10
89] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = Other) [
90 Egypt = 0 .0454 ,
91 SaudiArabia = 0 .0139 ,
92 Kuwait = 0 .0015 ,
93 Jordan = 0.0033 ,
94 I raq = 0.0172 ,
95 Sudan = 0.0231 ,
96 Libya = 0.0035 ,
97 Lebannon = 0.0023 ,
98 Indones ia = 0 .1257 ,
99 Malaysia = 0 .015 ,

100 Singapore = 0 .0027 ,
101 Pakistan = 0.0928 ,
102 Ph i l i pp i n e s = 0 .0503 ,
103 France = 0 .0342 ,
104 Alge r i a = 0 .0191 ,
105 Morocco = 0.0175 ,
106 Syr ia = 0 .0115 ,
107 Tunis ia = 0 .0057 ,
108 UAE = 0.0025 ,
109 Yemen = 0.0129 ,
110 Other = 0.50
111] e l s e [
112 Egypt = 0 .0454 ,
113 SaudiArabia = 0 .0139 ,
114 Kuwait = 0 .0015 ,
115 Jordan = 0.0033 ,
116 I raq = 0.0172 ,
117 Sudan = 0.0231 ,
118 Libya = 0.0035 ,
119 Lebannon = 0.0023 ,
120 Indones ia = 0 .1257 ,
121 Malaysia = 0 .015 ,
122 Singapore = 0 .0027 ,
123 Pakistan = 0.0928 ,
124 Ph i l i pp i n e s = 0 .0503 ,
125 France = 0 .0342 ,
126 Alge r i a = 0 .0191 ,
127 Morocco = 0.0175 ,
128 Syr ia = 0 .0115 ,
129 Tunis ia = 0 .0057 ,
130 UAE = 0.0025 ,
131 Yemen = 0.0129 ,
132 Other = 0.50]

306

Listing B.74: LPD for hasEconomicStanding(person)
1 i f any person have (ha sC lu s t e rPa r t i t i on = Cen t r a l S t a f f) [
2 UpperClass = . 35 ,
3 MiddleClass = . 50 ,
4 LowerClass = .15
5] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = SoutheastAsia) [
6 UpperClass = 0 ,
7 MiddleClass = . 83 ,
8 LowerClass = .17
9] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = MaghrebArab) [

10 UpperClass = 0 ,
11 MiddleClass = . 52 ,
12 LowerClass = .48
13] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = CoreArab) [
14 UpperClass = . 29 ,
15 MiddleClass = . 51 ,
16 LowerClass = .20
17] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = Other) [
18 UpperClass = . 20 ,
19 MiddleClass = . 30 ,
20 LowerClass = .50
21] e l s e [
22 UpperClass = . 20 ,
23 MiddleClass = . 30 ,
24 LowerClass = .50
25]

Listing B.75: LPD for hasEducationLevel(person)
1 i f any person have (ha sC lu s t e rPa r t i t i on = Cen t r a l S t a f f) [
2 MiddleSchool = . 04 ,
3 HighSchool = . 04 ,
4 Co l l ege = .04 ,
5 BA BS = .64 ,
6 MA MS = .04 ,
7 PhD = .20
8] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = SoutheastAsia) [
9 MiddleSchool = 0 ,

10 HighSchool = . 12 ,
11 Co l l ege = .18 ,
12 BA BS = .47 ,
13 MA MS = .23 ,
14 PhD = 0
15] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = MaghrebArab) [
16 MiddleSchool = . 35 ,
17 HighSchool = . 22 ,
18 Co l l ege = .24 ,
19 BA BS = .16 ,
20 MA MS = .03 ,
21 PhD = 0
22] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = CoreArab) [
23 MiddleSchool = . 15 ,

307

24 HighSchool = . 09 ,
25 Co l l ege = .47 ,
26 BA BS = .26 ,
27 MA MS = .02 ,
28 PhD = .01
29] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = Other) [
30 MiddleSchool = . 44 ,
31 HighSchool = . 20 ,
32 Co l l ege = .15 ,
33 BA BS = .10 ,
34 MA MS = .08 ,
35 PhD = .03
36] e l s e [
37 MiddleSchool = . 44 ,
38 HighSchool = . 20 ,
39 Co l l ege = .15 ,
40 BA BS = .10 ,
41 MA MS = .08 ,
42 PhD = .03
43]

Listing B.76: LPD for hasOccupation(person)
1 i f any person have (ha sC lu s t e rPa r t i t i on = Cen t r a l S t a f f) [
2 P r o f e s s i o n a l = . 63 ,
3 SemiSk i l l ed = .33 ,
4 UnSki l l ed = .04
5] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = SoutheastAsia) [
6 P r o f e s s i o n a l = . 78 ,
7 SemiSk i l l ed = .17 ,
8 UnSki l l ed = .05
9] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = MaghrebArab) [

10 P r o f e s s i o n a l = . 10 ,
11 SemiSk i l l ed = .40 ,
12 UnSki l l ed = .50
13] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = CoreArab) [
14 P r o f e s s i o n a l = . 45 ,
15 SemiSk i l l ed = .33 ,
16 UnSki l l ed = .22
17] e l s e i f any person have (ha sC lu s t e rPa r t i t i on = Other) [
18 P r o f e s s i o n a l = . 05 ,
19 SemiSk i l l ed = .30 ,
20 UnSki l l ed = .65
21] e l s e [
22 P r o f e s s i o n a l = . 05 ,
23 SemiSk i l l ed = .30 ,
24 UnSki l l ed = .65
25]

308

For more details on the probabilities assigned for the RVs in this Subsection, see Haberlin

and Costa [55]. There they give the justification for the same kind of nodes but in a BN.

309

Bibliography

310

Bibliography

[1] “The protege ontology editor and knowledge acquisition system,”
http://protege.stanford.edu/. [Online]. Available: http://protege.stanford.edu/

[2] “UnBBayes - the UnBBayes site,” http://unbbayes.sourceforge.net/. [Online].
Available: http://unbbayes.sourceforge.net/

[3] “Object constraint language (OCL),”
http://www.omg.org/technology/documents/modeling spec catalog.htm#OCL,
1997. [Online]. Available: http://www.omg.org/technology/documents/
modeling spec catalog.htm#OCL

[4] “Wireless/Mobile statistics,” http://www.mobileisgood.com/statistics.php, 2010.
[Online]. Available: http://www.mobileisgood.com/statistics.php

[5] “World internet usage statistics news and world population stats,”
http://www.internetworldstats.com/stats.htm, 2010. [Online]. Available: http:
//www.internetworldstats.com/stats.htm

[6] L. Adelman, Evaluating Decision Support and Expert Systems, 1st ed. John Wiley
& Sons, Incorporated, 1992.

[7] D. Allemang and J. A. Hendler, Semantic Web for the Working Ontologist. Morgan
Kaufmann, 2008.

[8] F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology languages for
the semantic web,” in Mechanizing Mathematical Reasoning, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2005, pp. 228–248, 10.1007/978-3-
540-32254-2 14. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-32254-2 14

[9] R. Balduino, “Introduction to OpenUP (Open unified process),” The Eclipse
Foundation, Tech. Rep., Aug. 2007. [Online]. Available: http://www.eclipse.org/epf/
general/OpenUP.pdf

[10] T. Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web, 1st ed. Harper Paperbacks, Nov. 2000.

[11] R. Brachman and H. Levesque, Knowledge Representation and Reasoning, 1st ed.
Morgan Kaufmann, Jun. 2004.

[12] R. Braz, E. Amir, and D. Roth, “Lifted First-Order probabilistic inference,” in
Introduction to Statistical Relational Learning. MIT Press, 2007. [Online]. Available:
http://l2r.cs.uiuc.edu/⇠danr/Papers/BrazAmRo07.pdf

311

http://protege.stanford.edu/
http://unbbayes.sourceforge.net/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.mobileisgood.com/statistics.php
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://dx.doi.org/10.1007/978-3-540-32254-2_14
http://www.eclipse.org/epf/general/OpenUP.pdf
http://www.eclipse.org/epf/general/OpenUP.pdf
http://l2r.cs.uiuc.edu/~danr/Papers/BrazAmRo07.pdf

[13] V. Bryl, C. Giuliano, L. Serafini, and K. Tymoshenko, “Supporting natural
language processing with background knowledge: Coreference resolution case,” in
Proceedings of the 9th International Semantic Web Conference, ser. ISWC’10, 2010,
p. 80–95, ACM ID: 1940288. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1940281.1940288

[14] A. Cal̀ı and T. Lukasiewicz, “An approach to probabilistic data integration for
the semantic web,” in Uncertainty Reasoning for the Semantic Web I, ser. Lecture
Notes in Computer Science, P. da Costa, C. d’Amato, N. Fanizzi, K. Laskey,
K. Laskey, T. Lukasiewicz, M. Nickles, and M. Pool, Eds. Springer Berlin
/ Heidelberg, 2008, vol. 5327, pp. 52–65, 10.1007/978-3-540-89765-1 4. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-89765-1 4

[15] A. Cal, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt, “Tightly integrated
probabilistic description logic programs for representing ontology mappings,” in
Foundations of Information and Knowledge Systems, ser. Lecture Notes in Computer
Science, S. Hartmann and G. Kern-Isberner, Eds. Springer Berlin / Heidelberg,
2008, vol. 4932, pp. 178–198, 10.1007/978-3-540-77684-0 14. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-77684-0 14

[16] R. N. Carvalho, “Plausible reasoning in the semantic web using Multi-Entity
bayesian networks - MEBN,” M.Sc., University of Braslia, Brasilia, Brazil, Feb. 2008.
[Online]. Available: http://hdl.handle.net/123456789/159

[17] R. N. Carvalho, P. C. G. Costa, K. B. Laskey, and K. Chang, “PROGNOS: predic-
tive situational awareness with probabilistic ontologies,” in Proceedings of the 13th
International Conference on Information Fusion, Edinburgh, UK, Jul. 2010.

[18] R. N. Carvalho, R. Haberlin, P. C. G. Costa, K. B. Laskey, and K. Chang, “Modeling
a probabilistic ontology for maritime domain awareness,” in Proceedings of the 14th
International Conference on Information Fusion, Chicago, USA, Jul. 2011.

[19] R. N. Carvalho, M. Ladeira, L. Santos, S. Matsumoto, and P. C. G. Costa,
“UnBBayes-MEBN: comments on implementing a probabilistic ontology tool,” in Pro-
ceedings of the IADIS International Conference Applied Computing 2008, ser. IADIS
’08, vol. Single. Algarve, Portugal: Nuno Guimares and Pedro Isaas, Apr. 2008, pp.
211–218.

[20] R. N. Carvalho, M. Ladeira, L. L. Santos, S. Matsumoto, and P. C. G. Costa, “A
GUI tool for plausible reasoning in the semantic web using MEBN,” in Innovative
Applications in Data Mining, ser. Studies in Computational Intelligence. Nadia
Nedjah, Luiza de Macedo Mourelle, Janusz Kacprzyk, 2009, vol. 169, pp. 17–45.

[21] R. N. Carvalho, K. B. Laskey, and P. C. G. da Costa, “PR-OWL 2.0 - bridging
the gap to OWL semantics,” in Proceedings of the 6th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW 2010), collocated with the 9th
International Semantic Web Conference (ISWC 2010), ser. URSW ’10, Nov. 2010,
pp. 73–84. [Online]. Available: http://ceur-ws.org/Vol-654/paper7.pdf

312

http://portal.acm.org/citation.cfm?id=1940281.1940288
http://portal.acm.org/citation.cfm?id=1940281.1940288
http://dx.doi.org/10.1007/978-3-540-89765-1_4
http://dx.doi.org/10.1007/978-3-540-77684-0_14
http://hdl.handle.net/123456789/159
http://ceur-ws.org/Vol-654/paper7.pdf

[22] R. N. Carvalho, K. B. Laskey, P. C. G. da Costa, M. Ladeira, L. L. Santos,
and S. Matsumoto, “UnBBayes: modeling uncertainty for plausible reasoning
in the semantic web,” in Semantic Web, gang wu ed. INTECH, Jan. 2010,
pp. 1–28. [Online]. Available: http://www.intechopen.com/articles/show/title/
unbbayes-modeling-uncertainty-for-plausible-reasoning-in-the-semantic-web

[23] R. N. Carvalho, L. L. Santos, M. Ladeira, and P. C. G. Costa, “A GUI tool for
plausible reasoning in the semantic web using MEBN,” in Proceedings of the Seventh
International Conference on Intelligent Systems Design and Applications, ser. ISDA
’07. Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2007, pp. 381–386.

[24] P. P. Chen, “The Entity-Relationship model: Toward a unified view of data,” ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9–36, 1976. [Online]. Available:
http://portal.acm.org/citation.cfm?id=320440

[25] T. Co↵man and S. Marcus, “Pattern classification in social network analysis: A case
study,” in Proceedings of the 2004 IEEE Aerospace Conference, vol. 5, 2004, pp. 3162–
3175.

[26] P. Costa, M. Ladeira, R. N. Carvalho, K. Laskey, L. Santos, and S. Matsumoto,
“A First-Order bayesian tool for probabilistic ontologies,” in Proceedings of the 21st
International Florida Artificial Intelligence Research Society Conference, May 2008,
pp. 631–636.

[27] P. C. G. Costa, “Bayesian semantics for the semantic web,” PhD, George Mason
University, Fairfax, VA, USA, Jul. 2005. [Online]. Available: http://digilib.gmu.edu:
8080/xmlui/handle/1920/455

[28] P. C. G. Costa, R. N. Carvalho, K. B. Laskey, and C. Y. Park, “Evaluating un-
certainty representation and reasoning in HLF systems,” in Proceedings of the 14th
International Conference on Information Fusion, Chicago, USA, Jul. 2011.

[29] P. C. G. Costa, K. B. Laskey, and K. J. Laskey, “PR-OWL: a bayesian framework for
the semantic web,” in Proceedings of the First Workshop on Uncertainty Reasoning
for the Semantic Web (URSW 2005), Galway, Ireland, Nov. 2005. [Online]. Available:
http://digilib.gmu.edu:8080/xmlui/handle/1920/454

[30] ——, “Probabilistic ontologies for e�cient resource sharing in semantic web
services,” in Proceedings of the Second Workshop on Uncertainty Reasoning for the
Semantic Web (URSW 2006), Athens, GA, USA, Nov. 2006. [Online]. Available:
http://digilib.gmu.edu:8080/xmlui/handle/1920/1735

[31] P. C. Costa, K. B. Laskey, and K. J. Laskey, “PR-OWL: a bayesian ontology
language for the semantic web,” in Uncertainty Reasoning for the Semantic
Web I: ISWC International Workshops, URSW 2005-2007, Revised Selected
and Invited Papers. Springer-Verlag, 2008, pp. 88–107. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1485733

[32] P. C. G. Costa, K. B. Laskey, and K. Chang, “PROGNOS: applying probabilistic
ontologies to distributed predictive situation assessment in naval operations,” in

313

http://www.intechopen.com/articles/show/title/unbbayes-modeling-uncertainty-for-plausible-reasoning-in-the-semantic-web
http://www.intechopen.com/articles/show/title/unbbayes-modeling-uncertainty-for-plausible-reasoning-in-the-semantic-web
http://portal.acm.org/citation.cfm?id=320440
http://digilib.gmu.edu:8080/xmlui/handle/1920/455
http://digilib.gmu.edu:8080/xmlui/handle/1920/455
http://digilib.gmu.edu:8080/xmlui/handle/1920/454
http://digilib.gmu.edu:8080/xmlui/handle/1920/1735
http://portal.acm.org/citation.cfm?id=1485733

Proceedings of the Fourteenth International Command and Control Research and
Technology Conference (ICCRTS 2009), Washington, D.C., USA, Jun. 2009. [Online].
Available: http://c4i.gmu.edu/⇠pcosta/pc publications.html#2009iccrts

[33] P. Costa, K. Chang, K. Laskey, and R. N. Carvalho, “A Multi-Disciplinary approach
to high level fusion in predictive situational awareness,” in Proceedings of the 12th In-
ternational Conference on Information Fusion, Seattle, Washington, USA, Jul. 2009,
pp. 248–255.

[34] L. de Raedt, Advances in Inductive Logic Programming. IOS Press, 1996.

[35] R. M. de Souza, “UnBBayes plug-in for documenting probabilistic ontologies using
UMP-ST,” B.S., University of Braśılia, Brasilia, Brazil, Forthcoming.

[36] T. G. Dietterich, P. Domingos, L. Getoor, S. Muggleton, and P. Tadepalli,
“Structured machine learning: The next ten years,” Machine Learning, vol. 73,
no. 1, pp. 3–23, 2008. [Online]. Available: http://www.springerlink.com.mutex.gmu.
edu/content/v0623m861p73244g/

[37] Z. Ding, Y. Peng, and R. Pan, “BayesOWL: uncertainty modeling in semantic
web ontologies,” in Soft Computing in Ontologies and Semantic Web. Springer
Berlin / Heidelberg, 2006, vol. 204, pp. 3–29, 10.1007/978-3-540-33473-6 1. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-33473-6 1

[38] M. J. Dombroski and K. M. Carley, “NETEST: estimating a terrorist network’s
structure - graduate student best paper award, CASOS 2002 conference,”
Springer Netherlands, vol. 8, no. 3, pp. 235–241, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A:1020723730930

[39] P. Domingos and D. Lowd, Markov Logic: An Interface Layer for Artificial Intelli-
gence, 1st ed. Morgan and Claypool Publishers, Jun. 2009.

[40] P. Domingos, D. Lowd, S. Kok, H. Poon, M. Richardson, and P. Singla, “Just
add weights: Markov logic for the semantic web,” in Uncertainty Reasoning for
the Semantic Web I, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2008, vol. 5327, pp. 1–25, 10.1007/978-3-540-89765-1 1. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-89765-1 1

[41] L. Drumond and R. Girardi, “Extracting ontology concept hierarchies from text using
markov logic,” in Proceedings of the 2010 ACM Symposium on Applied Computing,
ser. SAC ’10, 2010, p. 1354–1358, ACM ID: 1774379.

[42] H. B. Enderton, A Mathematical Introduction to Logic, Second Edition, 2nd ed. Aca-
demic Press, Jan. 2001.

[43] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider,
“OIL: an ontology infrastructure for the semantic web,” IEEE Intelligent Systems,
vol. 16, no. 2, pp. 38–45, 2001.

[44] R. Fikes and T. Kehler, “The role of Frame-Based representation in reasoning,”
Communications of the ACM, vol. 28, no. 9, pp. 904–920, 1985. [Online]. Available:
http://portal.acm.org.mutex.gmu.edu/citation.cfm?id=4284.4285

314

http://c4i.gmu.edu/~pcosta/pc_publications.html#2009iccrts
http://www.springerlink.com.mutex.gmu.edu/content/v0623m861p73244g/
http://www.springerlink.com.mutex.gmu.edu/content/v0623m861p73244g/
http://dx.doi.org/10.1007/978-3-540-33473-6_1
http://dx.doi.org/10.1023/A:1020723730930
http://dx.doi.org/10.1007/978-3-540-89765-1_1
http://portal.acm.org.mutex.gmu.edu/citation.cfm?id=4284.4285

[45] T. E. Foundation, “Eclipse process framework project (EPF),”
http://www.eclipse.org/epf/general/description.php, 2011. [Online]. Available:
http://www.eclipse.org/epf/general/description.php

[46] Y. Fukushige, “Representing probabilistic knowledge in the Semantic Web,” in
Proceedings of the W3C Workshop on Semantic Web for Life Sciences, Oct. 2004.
[Online]. Available: http://www.w3.org/2004/09/13-Yoshio/PositionPaper.html

[47] L. Getoor, N. Friedman, D. Koller, and B. Taskar, “Learning probabilistic models of
link structure,” The Journal of Machine Learning Research, vol. 3, p. 679–707, Mar.
2003, ACM ID: 944950. [Online]. Available: http://portal.acm.org/citation.cfm?id=
944919.944950

[48] L. Getoor, “An introduction to probabilistic graphical models for relational data,”
IEEE Data(base) Engineering Bulletin, vol. 29, pp. 32–39, 2006.

[49] R. Giugno and T. Lukasiewicz, “P-SHOQ (D): a probabilistic extension of
(D) for probabilistic ontologies in the semantic web,” in Logics in Artificial
Intelligence, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2002, vol. 2424, pp. 86–97, 10.1007/3-540-45757-7 8. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45757-7 8

[50] A. Gomez-Perez, O. Corcho, and M. Fernandez-Lopez, Ontological Engineering: with
Examples from the Areas of Knowledge Management, e-Commerce and the Semantic
Web, First Edition. Springer, Jul. 2004.

[51] O. Gotel and C. Finkelstein, “An analysis of the requirements traceability problem,”
in Proceedings of the First International Conference on Requirements Engineering,
1994, 1994, pp. 94–101.

[52] B. N. Grosof, R. Volz, I. Horrocks, and S. Decker, “Description logic programs:
Combining logic programs with description logic,” SSRN eLibrary, 2003. [Online].
Available: http://ssrn.com/abstract=460986

[53] W. O. W. Group, “OWL 2 web ontology language document overview,”
http://www.w3.org/TR/2009/PR-owl2-overview-20090922/, Sep. 2009. [Online].
Available: http://www.w3.org/TR/2009/PR-owl2-overview-20090922/

[54] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge
sharing,” International Journal of Human-Computer Studies - Special Issue: The
Role of Formal Ontology in the Information Technology, vol. 43, no. 5-6, pp. 907–928,
1995. [Online]. Available: http://portal.acm.org/citation.cfm?id=219701

[55] R. Haberlin and P. C. G. da Costa, “A bayesian model for determining crew a�liation
with terrorist organizations,” in Proceedings of the Quantitative Methods in Defense
and National Security 2010, Fairfax, VA, USA, May 2010.

[56] R. Haberlin, P. C. G. da Costa, and K. B. Laskey, “Hypothesis management in support
of inferential reasoning,” in Proceedings of the Fifteenth International Command and
Control Research and Technology Symposium, Santa Monica, CA, USA, Jun. 2010.

315

http://www.eclipse.org/epf/general/description.php
http://www.w3.org/2004/09/13-Yoshio/PositionPaper.html
http://portal.acm.org/citation.cfm?id=944919.944950
http://portal.acm.org/citation.cfm?id=944919.944950
http://dx.doi.org/10.1007/3-540-45757-7_8
http://ssrn.com/abstract=460986
http://www.w3.org/TR/2009/PR-owl2-overview-20090922/
http://portal.acm.org/citation.cfm?id=219701

[57] ——, “A Model-Based systems engineering approach to hypothesis management,” in
Proceedings of the Third International Conference on Model-Based Systems Engineer-
ing, Fairfax, VA, USA, Sep. 2010.

[58] J. Y. Halpern, “An analysis of First-Order logics of probability,” Artificial Intelligence,
vol. 46, no. 3, pp. 311–350, Dec. 1990. [Online]. Available: http://www.sciencedirect.
com/science/article/B6TYF-47YRKR8-6T/2/d1825eac77896c1aca74b64f8930d348

[59] P. Hayes and A. Rector, “Defining n-ary relations on the semantic web,”
http://www.w3.org/TR/swbp-n-aryRelations/, 2006. [Online]. Available: http:
//www.w3.org/TR/swbp-n-aryRelations/

[60] J. Heflin, “OWL web ontology language use cases and require-
ments,” http://www.w3.org/TR/2004/REC-webont-req-20040210/, Feb. 2004,
W3C Recommendation. [Online]. Available: http://www.w3.org/TR/2004/
REC-webont-req-20040210/

[61] J. Heinsohn, “Probabilistic description logics,” in Proceedings of the 10th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-94). Seattle, Washington,
USA: Morgan Kaufmann, 1994, pp. 311–318. [Online]. Available: http://uai.sis.pitt.
edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article id=518&proceeding id=10

[62] P. Hitzler, M. Krtzsch, and S. Rudolph, Foundations of Semantic Web Technologies,
1st ed. Chapman and Hall/CRC, Aug. 2009.

[63] M. Holi and E. Hyvnen, “Modeling uncertainty in semantic web taxonomies,”
in Soft Computing in Ontologies and Semantic Web, ser. Studies in Fuzziness
and Soft Computing, Z. Ma, Ed. Springer Berlin / Heidelberg, 2006,
vol. 204, pp. 31–46, 10.1007/978-3-540-33473-6 2. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-33473-6 2

[64] M. Horridge and P. F. Patel-Schneider, “OWL 2 web ontology language
manchester syntax,” W3C, Tech. Rep., 2009. [Online]. Available: http:
//www.w3.org/2007/OWL/wiki/ManchesterSyntax

[65] I. Horrocks, “DAML OIL: a description logic for the semantic web,” IEEE
Data Engineering Bulletin, vol. 25, pp. 4–9, 2002. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1247

[66] I. Horrocks, P. F. Patel-Schneider, and F. V. Harmelen, “From SHIQ
and RDF to OWL: the making of a web ontology language,” Journal
of Web Semantics, vol. 1, no. 1, pp. 7–26, 2003. [Online]. Available:
http://www.citeulike.org/user/masaka/article/956280

[67] I. Horrocks, U. Sattler, and S. Tobies, “Reasoning with individuals for the description
logic SHIQ,” in Proceedings of the 17th International Conference on Automated
Deduction, ser. CADE-17. London, UK: Springer-Verlag, 2000, pp. 482–496.
[Online]. Available: http://portal.acm.org/citation.cfm?id=648236.753643

[68] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process.
Addison-Wesley Professional, Feb. 1999.

316

http://www.sciencedirect.com/science/article/B6TYF-47YRKR8-6T/2/d1825eac77896c1aca74b64f8930d348
http://www.sciencedirect.com/science/article/B6TYF-47YRKR8-6T/2/d1825eac77896c1aca74b64f8930d348
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://www.w3.org/TR/2004/REC-webont-req-20040210/
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=518&proceeding_id=10
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=518&proceeding_id=10
http://dx.doi.org/10.1007/978-3-540-33473-6_2
http://dx.doi.org/10.1007/978-3-540-33473-6_2
http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1247
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1247
http://www.citeulike.org/user/masaka/article/956280
http://portal.acm.org/citation.cfm?id=648236.753643

[69] M. Jaeger, “Relational bayesian networks,” in Proceedings of the 13th UAI. Morgan
Kaufmann, 1997, pp. 266–273. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.53.435

[70] ——, “On the complexity of inference about probabilistic relational models,”
Artificial Intelligence, vol. 117, no. 2, p. 297308, Mar. 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=331623.331644

[71] D. Koller, A. Levy, and A. Pfe↵er, “P-CLASSIC: a tractable probabilistic
description logic,” Proceedings of AAAI-97, pp. 390–397, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5907

[72] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence, 1st ed. Chapman
& Hall/CRC, Sep. 2003.

[73] V. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24,
no. 3, pp. 43–52, 2001. [Online]. Available: http://www.bibsonomy.org/bibtex/
2c631a0818017e58cdf3a9d9785e9b698/maksim

[74] P. Kruchten, The Rational Unified Process: An Introduction, 2nd ed. Addison-Wesley
Professional, Mar. 2000.

[75] K. B. Laskey, “Sensitivity analysis for probability assessments in bayesian networks,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 25, no. 6, pp. 901 –909,
Jun. 1995.

[76] K. B. Laskey and P. C. G. Costa, “Of starships and klingons: Bayesian
logic for the 23rd century,” in Proceedings of the 21th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-05). Arlington, Virginia, USA: AUAI
Press, 2005. [Online]. Available: http://uai.sis.pitt.edu/displayArticleDetails.jsp?
mmnu=1&smnu=2&article id=1225&proceeding id=21

[77] K. B. Laskey, P. C. G. Costa, E. J. Wright, and K. Laskey, “Probabilistic ontol-
ogy for Net-Centric fusion,” in Proceedings of the 10th International Conference on
Information Fusion, 2007, 2007, pp. 1–8.

[78] K. B. Laskey, “MEBN: a language for First-Order bayesian knowledge bases,”
Artificial Intelligence, vol. 172, no. 2-3, pp. 140–178, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1327646

[79] K. B. Laskey, P. C. G. da Costa, and T. Janssen, “Probabilistic ontologies for knowl-
edge fusion,” in Proceedings of the 11th International Conference on Information
Fusion, 2008, 2008, pp. 1–8.

[80] ——, “Probabilistic ontologies for Multi-INT fusion,” George Mason University C4I
Center, Tech. Rep., May 2008. [Online]. Available: http://stinet.dtic.mil/oai/oai?
&verb=getRecord&metadataPrefix=html&identifier=ADA503008

[81] K. B. Laskey and S. M. Mahoney, “Network engineering for agile belief network
models,” IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 4, pp.
487–498, 2000. [Online]. Available: http://portal.acm.org/citation.cfm?id=628073

317

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.435
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.435
http://portal.acm.org/citation.cfm?id=331623.331644
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5907
http://www.bibsonomy.org/bibtex/2c631a0818017e58cdf3a9d9785e9b698/maksim
http://www.bibsonomy.org/bibtex/2c631a0818017e58cdf3a9d9785e9b698/maksim
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1225&proceeding_id=21
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1225&proceeding_id=21
http://portal.acm.org/citation.cfm?id=1327646
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA503008
http://stinet.dtic.mil/oai/oai?&verb=getRecord&metadataPrefix=html&identifier=ADA503008
http://portal.acm.org/citation.cfm?id=628073

[82] K. Laskey and K. B. Laskey, “Uncertainty reasoning for the world wide web: Report
on the URW3-XG incubator group,” W3C, URW3-XG, 2008. [Online]. Available:
http://ite.gmu.edu/⇠klaskey/papers/URW3 URSW08.pdf

[83] H. J. Levesque and G. Lakemeyer, The Logic of Knowledge Bases, 1st ed. The MIT
Press, Feb. 2001.

[84] T. Lukasiewicz, “Probabilistic description logic programs,” International Journal
of Approximate Reasoning, vol. 45, no. 2, pp. 288–307, 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1265854

[85] ——, “Expressive probabilistic description logics,” Artificial Intel-
ligence, vol. 172, no. 6-7, pp. 852–883, Apr. 2008. [On-
line]. Available: http://www.sciencedirect.com.mutex.gmu.edu/science/article/
B6TYF-4R1MF4C-1/2/36132fd965af5a169b53a197616f4721

[86] J. E. O. Luna, K. Revoredo, and F. G. Cozman, “Learning sentences and assessments
in probabilistic description logics,” in Proceedings of the 6th Uncertainty Reasoning
for the Semantic Web (URSW 2010) on the 9th International Semantic Web
Conference (ISWC 2010), ser. URSW ’10, Nov. 2010, pp. 85–96. [Online]. Available:
http://CEUR-WS.org/Vol-654/paper8.pdf

[87] ——, “Semantic query extension through probabilistic description logics,” in
Proceedings of the 6th Uncertainty Reasoning for the Semantic Web (URSW 2010) on
the 9th International Semantic Web Conference (ISWC 2010), ser. URSW ’10, Nov.
2010, pp. 49–60. [Online]. Available: http://CEUR-WS.org/Vol-654/paper5.pdf

[88] S. Matsumoto, “Framework based in plug-ins for reasoning with probabilistic ontolo-
gies,” M.Sc., University of Braśılia, Brasilia, Brazil, Forthcoming.

[89] D. L. McGuinness and F. V. Harmelen, “OWL web ontology language
overview,” http://www.w3.org/TR/owl-features/, Feb. 2004. [Online]. Available:
http://www.w3.org/TR/owl-features/

[90] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov, “Blog:
Probabilistic models with unknown objects,” in Proceedings of the 19th international
joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc., 2005,
pp. 1352–1359. [Online]. Available: http://portal.acm.org/citation.cfm?id=1642293.
1642508

[91] B. Milch and S. Russell, “First-Order probabilistic languages: Into the unknown,”
in Inductive Logic Programming, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007, vol. 4455, pp. 10–24. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73847-3 3

[92] M. Minsky, “A framework for representing knowledge,” Massachusetts Institute of
Technology, Tech. Rep., 1974. [Online]. Available: http://portal.acm.org.mutex.gmu.
edu/citation.cfm?id=889222

318

http://ite.gmu.edu/~klaskey/papers/URW3_URSW08.pdf
http://portal.acm.org/citation.cfm?id=1265854
http://www.sciencedirect.com.mutex.gmu.edu/science/article/B6TYF-4R1MF4C-1/2/36132fd965af5a169b53a197616f4721
http://www.sciencedirect.com.mutex.gmu.edu/science/article/B6TYF-4R1MF4C-1/2/36132fd965af5a169b53a197616f4721
http://CEUR-WS.org/Vol-654/paper8.pdf
http://CEUR-WS.org/Vol-654/paper5.pdf
http://www.w3.org/TR/owl-features/
http://portal.acm.org/citation.cfm?id=1642293.1642508
http://portal.acm.org/citation.cfm?id=1642293.1642508
http://dx.doi.org/10.1007/978-3-540-73847-3_3
http://portal.acm.org.mutex.gmu.edu/citation.cfm?id=889222
http://portal.acm.org.mutex.gmu.edu/citation.cfm?id=889222

[93] R. Mizoguchi, “YAMATO : Yet another more advanced top-level,” The Institute of
Scientific and Industrial Research Osaka University, Tech. Rep., Dec. 2010. [Online].
Available: http://www.ei.sanken.osaka-u.ac.jp/hozo/onto library/YAMATO.pdf

[94] J. Moody, “Fighting a hydra: A note on the network embeddedness of the war
on terror,” Structure and Dynamics, vol. 1, no. 2, Jan. 2005. [Online]. Available:
http://www.escholarship.org/uc/item/7x3881bs

[95] I. Moon and K. M. Carley, “Modeling and simulating terrorist networks in social
and geospatial dimensions,” IEEE Intelligent Systems, vol. 22, pp. 40–49, Sep. 2007,
ACM ID: 1304517. [Online]. Available: http://dx.doi.org/10.1109/MIS.2007.91

[96] M. G. Morgan and M. Henrion, Uncertainty: A Guide to Dealing with Uncertainty in
Quantitative Risk and Policy Analysis. Cambridge University Press, Jun. 1992.

[97] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2 web ontology language
structural specification and Functional-Style syntax,” http://www.w3.org/TR/owl2-
syntax/, Oct. 2009. [Online]. Available: http://www.w3.org/TR/owl2-syntax/

[98] A. Mueller, “A critical study of the brazilian procurement law,” IBI - The
Institute of Brazilian Business & Public Management Issues, Washington, Tech.
Rep., 1998. [Online]. Available: http://www.gwu.edu/⇠ibi/minerva/Fall1998/Andre.
Mueller.html

[99] S. Muggleton, “Stochastic logic programs,” in Advances in Inductive Logic Program-
ming. IOS Press, 1996, pp. 254–264.

[100] H. Nottelmann and N. Fuhr, “Adding probabilities and rules to OWL lite subsets
based on probabilistic datalog,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 14, no. 1, pp. 17–41, 2006.

[101] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to
creating your first ontology,” Stanford Knowledge Systems Laboratory and Stanford
Medical Informatics, SMI technical report SMI-2001-0880, 2001. [Online]. Available:
http://www.ksl.stanford.edu/KSL Abstracts/KSL-01-05.html

[102] N. F. Noy, T. Tudorache, C. I. Nyulas, and M. A. Musen, “The ontology life cycle:
Integrated tools for editing, publishing, peer review, and evolution of ontologies,”
in AMIA 2010 Symposium Proceedings, Washington, DC, USA, 2010. [Online].
Available: http://proceedings.amia.org/127gcf/1

[103] J. Z. Pan, G. Stoilos, G. Stamou, V. Tzouvaras, and I. Horrocks, “f-SWRL: a fuzzy
extension of SWRL,” Journal of Data Semantics VI, vol. 4090/2006, pp. 28–46,
2006. [Online]. Available: http://eprints.aktors.org/581/

[104] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL web ontology language
semantics and abstract syntax,” http://www.w3.org/TR/owl-semantics/, Feb. 2004,
W3C Recommendation. [Online]. Available: http://www.w3.org/TR/owl-semantics/

[105] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence, 1st ed. Morgan Kaufmann, Sep. 1988.

319

http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/YAMATO.pdf
http://www.escholarship.org/uc/item/7x3881bs
http://dx.doi.org/10.1109/MIS.2007.91
http://www.w3.org/TR/owl2-syntax/
http://www.gwu.edu/~ibi/minerva/Fall1998/Andre.Mueller.html
http://www.gwu.edu/~ibi/minerva/Fall1998/Andre.Mueller.html
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html
http://proceedings.amia.org/127gcf/1
http://eprints.aktors.org/581/
http://www.w3.org/TR/owl-semantics/

[106] A. Pfe↵er, “IBAL: a probabilistic rational programming language,” Proceedings of
the 17TH IJCAI, pp. 733–740, 2001. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.29.1299

[107] ——, “The design and implementation of IBAL: a generalpurpose probabilistic
programming language,” Harvard Univesity, 2005. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.2271

[108] D. Poole, “Probabilistic horn abduction and bayesian networks,” Artifi-
cial Intelligence, vol. 64, no. 1, pp. 81–129, Nov. 1993. [Online].
Available: http://www.sciencedirect.com/science/article/B6TYF-47YRKWW-91/
2/↵00e473411cf26af878adee4645a3bd

[109] ——, “The independent choice logic for modelling multiple agents under
uncertainty,” Artificial Intelligence, vol. 94, no. 1-2, pp. 7–56, Jul. 1997. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6TYF-3SP2BB3-2/
2/dd8cd89181206276936dc31e7631afc1

[110] D. Poole, C. Smyth, and R. Sharma, “Semantic science: Ontologies, data and
probabilistic theories,” in Uncertainty Reasoning for the Semantic Web I, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2008, vol. 5327, pp.
26–40. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89765-1 2

[111] L. Predoiu, “Information integration with bayesian description logic programs,” in
Proceedings of 3rd IIWeb Interdisciplinary Workshop for Information Integration on
the Web in conjunction with the WWW 2006 conference, Edinburgh, Great Britain,
2006. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.88.6485

[112] L. Predoiu and H. Stuckenschmidt, “A probabilistic framework for information
integration and retrieval on the semantic web ABSTRACT,” in Proceedings of the
3rd International Workshop on Database Interoperability (InterDB), 2007. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.2478

[113] ——, “Probabilistic extensions of semantic web languages - a survey,” in The Semantic
Web for Knowledge and Data Management: Technologies and Practices. Idea Group
Inc, 2008.

[114] W. W. Royce, “Managing the development of large software systems: Concepts
and techniques,” Proceedings of IEEE WESTCON, pp. 1–9, 1970, reprinted in
Proceedings of the Ninth International Conference on Software Engineering, March
1987, pp. 328–338. [Online]. Available: http://www.cs.umd.edu/class/spring2003/
cmsc838p/Process/waterfall.pdf

[115] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual. Addison-Wesley Professional, Jan. 1999.

[116] M. Sageman, Understanding Terror Networks. University of Pennsylvania Press,
Apr. 2004.

320

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1299
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.1299
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.2271
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.2271
http://www.sciencedirect.com/science/article/B6TYF-47YRKWW-91/2/ff00e473411cf26af878adee4645a3bd
http://www.sciencedirect.com/science/article/B6TYF-47YRKWW-91/2/ff00e473411cf26af878adee4645a3bd
http://www.sciencedirect.com/science/article/B6TYF-3SP2BB3-2/2/dd8cd89181206276936dc31e7631afc1
http://www.sciencedirect.com/science/article/B6TYF-3SP2BB3-2/2/dd8cd89181206276936dc31e7631afc1
http://dx.doi.org/10.1007/978-3-540-89765-1_2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.6485
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.6485
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.2478
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

[117] T. Sato, “A glimpse of symbolic-statistical modeling by PRISM,” Journal of
Intelligent Information Systems, vol. 31, no. 2, pp. 161–176, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1410420&dl=

[118] T. Sato and Y. Kameya, “New advances in Logic-Based probabilistic modeling by
PRISM,” in Probabilistic Inductive Logic Programming. Springer-Verlag, 2008, pp.
118–155. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-78652-8 5

[119] D. A. Schum and S. Starace, The Evidential Foundations of Probabilistic Reasoning.
Northwestern University Press, Feb. 2001.

[120] S. Sen and A. Kruger, “Heuristics for constructing bayesian network based geospatial
ontologies,” in On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2007, vol. 4803, pp. 953–970, 10.1007/978-3-540-76848-7 63. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-76848-7 63

[121] G. Shafer, “The construction of probability arguments,” in Probability and
Inference in the Law of Evidence. K lu wer Academic Publishers, 1988, pp.
185–204. [Online]. Available: http://74.125.93.132/search?q=cache:UCiWL9BwiZsJ:
www.glennshafer.com/assets/downloads/articles/article26 construction88.pdf+
%22The+Construction+of+Probability+Arguments%22+shafer&cd=1&hl=en&ct=
clnk&gl=us&client=firefox-a

[122] P. Singla and P. Domingos, “Lifted First-Order belief propagation,” in Proceedings
of the 23rd national conference on Artificial intelligence - Volume 2. AAAI Press,
2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=1620163.1620242

[123] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL web ontology
language guide,” http://www.w3.org/TR/owl-guide/, Feb. 2004. [Online]. Available:
http://www.w3.org/TR/owl-guide/

[124] I. Sommerville, Software Engineering, 9th ed. Addison Wesley, Mar. 2010.

[125] D. Spiegelhalter, A. Thomas, N. Best, and W. Gilks, “BUGS 0.6 bayesian
inference using gibbs sampling (Addendum to manual),” Medical Research
Council Biostatistics Unit, Institute of Public Health, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.1739

[126] U. Straccia, “A fuzzy description logic for the semantic web,” in Fuzzy Logic and
the Semantic Web, Capturing Intelligence. Elsevier, 2005, pp. 167–181. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.2720

[127] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: Principles
and methods,” Data & Knowledge Engineering, vol. 25, no. 1-2, pp. 161–
197, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TYX-3SYXJ6S-G/2/67ea511f5600d90a74999a9fef47ac98

[128] J. Tao, Z. Wen, W. Hanpin, and W. Lifu, “PrDLs: a new kind of
probabilistic description logics about belief,” in New Trends in Applied Artificial

321

http://portal.acm.org/citation.cfm?id=1410420&dl=
http://dx.doi.org/10.1007/978-3-540-78652-8_5
http://dx.doi.org/10.1007/978-3-540-76848-7_63
http://74.125.93.132/search?q=cache:UCiWL9BwiZsJ:www.glennshafer.com/assets/downloads/articles/article26_construction88.pdf+%22The+Construction+of+Probability+Arguments%22+shafer&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a
http://74.125.93.132/search?q=cache:UCiWL9BwiZsJ:www.glennshafer.com/assets/downloads/articles/article26_construction88.pdf+%22The+Construction+of+Probability+Arguments%22+shafer&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a
http://74.125.93.132/search?q=cache:UCiWL9BwiZsJ:www.glennshafer.com/assets/downloads/articles/article26_construction88.pdf+%22The+Construction+of+Probability+Arguments%22+shafer&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a
http://74.125.93.132/search?q=cache:UCiWL9BwiZsJ:www.glennshafer.com/assets/downloads/articles/article26_construction88.pdf+%22The+Construction+of+Probability+Arguments%22+shafer&cd=1&hl=en&ct=clnk&gl=us&client=firefox-a
http://portal.acm.org/citation.cfm?id=1620163.1620242
http://www.w3.org/TR/owl-guide/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.1739
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.2720
http://www.sciencedirect.com/science/article/B6TYX-3SYXJ6S-G/2/67ea511f5600d90a74999a9fef47ac98
http://www.sciencedirect.com/science/article/B6TYX-3SYXJ6S-G/2/67ea511f5600d90a74999a9fef47ac98

Intelligence, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2007, vol. 4570, pp. 644–654, 10.1007/978-3-540-73325-6 64. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73325-6 64

[129] O. Udrea, V. S. Subrahmanian, and Z. Majkic, “Probabilistic RDF,” in Proceedings
of the 2006 IEEE International Conference on Information Reuse and Integration,
IRI - 2006. Waikoloa, Hawaii, USA: IEEE Systems, Man, and Cybernetics Society,
2006, pp. 172–177.

[130] M. Uschold, V. R. Benjamins, B. Ch, A. Gomez-perez, N. Guarino, and R. Jasper, “A
framework for understanding and classifying ontology applications,” in Proceedings
of the IJCAI99 Workshop on Ontologies, 1999, pp. 16–21. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.6456

[131] J. Vennekens, S. Verbaeten, M. Bruynooghe, and C. A, “Logic programs
with annotated disjunctions,” in Proceedigns of the International Conference
on Logic Programming, 2004, 2004, pp. 431–445. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.6404

[132] L. Wagenhals and A. Levis, “Course of action analysis in a cultural landscape using
influence nets,” in Proceedings of the IEEE Symposium on Computational Intelligence
in Security and Defense Applications, 2007, 2007, pp. 116–123.

[133] J. B. Warmer and A. G. Kleppe, The Object Constraint Language: Precise Modeling
With Uml, 1st ed. Addison-Wesley Professional, Oct. 1998.

[134] K. E. Wiegers, Software Requirements, 2nd ed. Microsoft Press, Feb. 2003.

[135] C. Yang and T. Ng, “Terrorism and crime related weblog social network: Link, content
analysis and information visualization,” in Proceedings of the IEEE Intelligence and
Security Informatics, 2007, 2007, pp. 55–58.

[136] Y. Yang and J. Calmet, “OntoBayes: an Ontology-Driven uncertainty model,”
in Proceedings of the International Conference on Computational Intelligence for
Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-IAWTIC’06)
- Volume 01. IEEE Computer Society, 2005, pp. 457–463. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1135162

322

http://dx.doi.org/10.1007/978-3-540-73325-6_64
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.6456
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.6404
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.6404
http://portal.acm.org/citation.cfm?id=1135162

Curriculum Vitae

During the 3 years of his PhD, Rommel N. Carvalho, was a Graduate Research Assis-
tant in the Department of Systems Engineering and Operations Research at George Mason
University (GMU), Virginia, USA. He received his Master in Computer Science and his
Bachelor of Computer Science from University of Braśılia, DF, Brazil, in 2008 and 2003,
respectively. He is an Artificial Intelligence (AI) researcher with focus on uncertainty in the
Semantic Web using Bayesian Inference, Data Mining, Software Engineering and Java Pro-
gramming. Awarded programmer with experience in implementation of Bayesian Network
systems (e.g. UnBBayes), Multi-Entity Bayesian Network and Probabilistic Web Ontology
Language (PR-OWL), and various web-based applications. Rommel N. Carvalho has been
working for the Brazilian Government at the O�ce of the Comptroller General (CGU) as
an Information Technology (IT) expert since 2005. He has also done extensive research on
fraud detection and prevention for the Brazilian Government and situation awareness for
the U.S. Navy. In most of the systems he helped develop he was the project manager, which
gave him the experience necessary to get the Project Management Professional (PMP) cer-
tificate. During his PhD, he has published over 15 papers, among conference and workshop
papers, book chapters, journal papers, and workshop proceedings.

323

	List of Tables
	List of Figures
	Abstract
	 Introduction
	Problem Statement
	Lack of mapping to OWL
	Lack of support for OWL types

	Research Contributions and Structure of this Dissertation

	 Different Approaches To Knowledge Modeling
	UML and ER
	Knowledge Representation and Reasoning
	Ontology and the Semantic Web
	The Advantages of Ontology and the Semantic Web
	The Beginning of OWL
	The Web Ontology Language (OWL)

	 Representing Uncertainty
	Multi-Entity Bayesian Network (MEBN)
	Probabilistic Web Ontology Language (PR-OWL)
	Related Work
	First-Order Probabilistic Languages (FOPL)
	Probabilistic Languages for the SW

	 A Formal Definition for Probabilistic Ontology - PR-OWL 2
	Why map PR-OWL Random Variables to OWL Properties?
	The bridge joining OWL and PR-OWL
	Extending PR-OWL to Use OWL's Types
	Defining a Random Variable in PR-OWL 2
	Mutually Exclusive and Collectively Exhaustive Outcomes
	Avoiding OWL Full
	Built-in Random Variables
	Defining Arguments for Random Variables
	Defining Distributions for Random Variables
	Examples of Random Variables

	Entity Hierarchy and Polymorphism
	Type Uncertainty
	Defining Nodes in PR-OWL 2
	Defining Domain-Specific Knowledge
	Defining Findings
	MEBN Expressions
	Examples of Nodes

	Types of Uncertainty Reasoning for the Semantic Web

	 Uncertainty Modeling Process for Semantic Technologies (UMP-ST)
	Probabilistic Ontology for Procurement Fraud Detection and Prevention in Brazil
	Requirements
	Analysis & Design
	Implementation
	Test

	Probabilistic Ontology for Maritime Domain Awareness
	First Iteration
	Second Iteration
	Third Iteration
	Testing the Final MDA PO

	 Conclusion
	Future Work

	 PR-OWL 2 Abstract Syntax and Semantics
	Random Variables
	MEBN Main Elements
	MEBN Expressions

	 Use Cases Implementation Details
	Probabilistic Ontology for Procurement Fraud Detection and Prevention in Brazil
	Probabilistic Ontology for Maritime Domain Awareness
	Fist Iteration
	Second Iteration
	Third Iteration

	Bibliography

